Elan™SC520 Microcontroller

User’s Manual

Order #22004B

AMDA

© 2001 Advanced Micro Devices, Inc. All rights reserved.

The contents of this document are provided in connection with Advanced Micro Devices, Inc. ("AMD") products. AMD makes no representations
or warranties with respect to the accuracy or completeness of the contents of this publication and reserves the right to make changes to specifi-
cations and product descriptions at any time without notice. No license, whether express, implied, arising by estoppel or otherwise, to any intel-
lectual property rights is granted by this publication. Except as set forth in AMD’s Standard Terms and Conditions of Sale, AMD assumes no
liability whatsoever, and disclaims any express or implied warranty, relating to its products including, but not limited to, the implied warranty of
merchantability, fithess for a particular purpose, or infringement of any intellectual property right.

AMD’s products are not designed, intended, authorized or warranted for use as components in systems intended for surgical implant into the
body, or in other applications intended to support or sustain life, or in any other application in which the failure of AMD’s product could create a
situation where personal injury, death, or severe property or environmental damage may occur. AMD reserves the right to discontinue or make
changes to its products at any time without notice.

Trademarks

AMD, the AMD logo and combinations thereof, Am186, AMDebug, AMD Athlon, E86, K86, and Elan are trademarks; Am486 and Am5,86 are
registered trademarks; and FusionE86 is a service mark of Advanced Micro Devices, Inc.

Microsoft, Windows, and Windows NT are registered trademarks of Microsoft Corp.

Product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

AMDA

IF YOU HAVE QUESTIONS, WE’'RE HERE TO HELP YOU.

The AMD customer service network includes U.S. offices, international offices, and a
customer training center. Expert technical assistance is available from the AMD worldwide
staff of field application engineers and factory support staff to answer E86™ family hardware
and software development questions.

Frequently accessed numbers are listed below. Additional contact information is listed on
the back of this manual. AMD’s WWW site lists the latest phone numbers.

Technical Support
Answers to technical questions are available online, through e-mail, and by telephone.

Go to AMD’s home page at www.amd.com and follow the Support link for the latest AMD
technical support phone numbers, software, and Frequently Asked Questions.

For technical support questions on all E86 products, send e-mail to
epd.support@amd.com (inthe US and Canada) or euro.tech@amd.com (in Europe and
the UK).

You can also call the AMD Corporate Applications Hotline at:
(800) 222-9323 Toll-free for U.S. and Canada
44-(0) 1276-803-299 U.K. and Europe hotline

WWW Support

For specific information on E86 products, access the AMD home page at www.amd.com
and follow the Embedded Processors link. These pages provide information on upcoming
product releases, overviews of existing products, information on product support and tools,
and a list of technical documentation. Support tools include online benchmarking tools and
CodeKit software—tested source code example applications. Many of the technical
documents are available online in PDF form.

Questions, requests, and input concerning AMD’s WWW pages can be sent via e-mail to
webfeedback@amd.com.

Documentation and Literature Support

Data books, user's manuals, data sheets, application notes, and product CDs are free with
a simple phone call. Internationally, contact your local AMD sales office for product literature.

To order literature, go towww.amd.com/support/literature.html or, inthe US and Canada,
call (800) 222-9323.

Third-Party Support

AMD FusionE865“ program partners provide an array of products designed to meet critical time-
to-market needs. Products and solutions available include emulators, hardware and software
debuggers, board-level products, and software development tools, among others. The WWW
site and the E86 ™ Family Products Development Tools CD, order #21058, describe these
solutions. In addition, mature development tools and applications for the x86 platform are
widely available in the general marketplace.

Elan™SC520 Microcontroller User’s Manual iii

AMDZ\

iv Elan™SC520 Microcontroller User’s Manual

TABLE OF CONTENTS

PREFACE

CHAPTER 1

CHAPTER 2

CHAPTER 3

INTRODUCTION XXII
Elan™SC520 Microcontroller.t XXili
Purpose of thisManual XXiii
Intended AudiENCE XXiii
Overview of this Manual XXiii
Related DOCUMENES oo e e e XXV
AMD Documentation i XXV
Additional Information XXV
Documentation CONVENLIONSt e e XXV
ARCHITECTURAL OVERVIEW 1-1
1.1 Elan™SC520 MIicrocontroller.ouuueeeiie e, 1-1
1.1.1 Distinctive Characteristics e 1-1
1.2 Block Diagram e 1-2
1.3 Architectural OVerviEWo e 1-4
1.3.1 Industry-Standard x86 Architecture. 1-4
1.3.2 AMDebug™ Technology for Advanced Debugging 1-4
1.3.3 Industry-Standard PCI Bus Interface 1-5
1.3.4 High-Performance SDRAM Controller. 1-5
1.35 ROM/FlashController i 1-5
1.3.6 Flexible Address-Mapping. 1-5
1.3.7 General-Purpose (GP) Bus Interface 1-6
1.3.8 Clock Generation.t 1-6
1.3.9 Integrated Peripherals 1-7
1.3.10 JTAG Boundary Scan Test Interface 1-7
1.3.11 System Testing and Debugging Features 1-8
1.4 Applications 1-8
1.4.1 Smart Residential Gateway i 1-8
142 ThinClient. e 1-8
1.4.3 Digital Set TOPp BOX oot 1-9
1.4.4 Telephone Line Concentratorc.c.uuienannn. 1-9
PIN INFORMATION 2-1
2.1 OVEIVIEW. . . ottt e e 2-1
2.2 Logic SYymbols 2-1
2.3 Signal DesCriptions.o e 2-4
SYSTEM INITIALIZATION 3-1
3L OVEIVIEW. .« ottt 3-1
3.1.1 Native Embedded Initialization Sequence 3-1
3.1.2 BIOS Initialization Sequence, 3-3
3.1.3 Memory-Mapped Configuration Region (MMCR) 3-3
3.14 ResetEvent 3-4
3.1.5 Reset Vectorand Reset Segment 3-5
3.2 Configuring the SDRAM Controller 3-6
3.3 Identifyingthe CPU Core e 3-7
3.4 Settingthe CPU Speed e 3-7
3.5 Configuring External GP Bus Devices 3-7
3.6 Configuring the Pin Multiplexing. i 3-8
3.7 Configuring the Programmable Address Region (PAR) Registers 3-8
3.7.1 SpecifyingPagesand Regions 3-9

Elan™SC520 Microcontroller User’s Manual v

AMDZ\

Table of Contents

3.7.2 Address Region Attributes. 3-12
3.7.2.1 Write-Protect Attribute 3-12
3.7.2.2 Cacheability Control Attribute 3-12
3.7.2.3 Code Execution Attribute 3-12
3.7.2.4 Performance Considerations 3-12
3.7.3 PARRegister Priority. 3-13
3.7.4 External GPBUusSDeVviCest 3-13
3.7.4.1 Single Device (an A/D Converter) Using
OneChipSelect.......... 3-14
3.7.4.2 Single Device That Performs Its Own Decode. 3-14
3.7.4.3 Multiple Devices On One Chip Select 3-14
375 PCIBUSDEVICES . . .\ttt 3-15
3.75.1 VGA Controlleronthe PCIBus 3-15
3.7.5.2 Network Adapter for Remote Program Loading. 3-16
3.7.6 External ROM DeVIiCeSt 3-17
3.7.6.1 Boot ROM Device Mapping for BIOS Shadowing3-17
3.7.6.2 Two Banks of Flash for an Execute-In-Place (XIP)
Operating System i 3-17
3.7.7 SDRAMREQIONS 3-18
3.7.7.1 SettingUpDMABuUffers. 3-18
3.7.7.2 Write-Protected Code Segments. 3-18
3.8 Configuring the Interrupt Mapping 3-19
3.8.1 Edge-Sensitive or Level-Triggered Interrupts 3-19
3.8.2 Interrupt Mappingt 3-19
3.8.3 InterruptPolarity 3-20
3.9 Configuring the Programmable /O Pins. 3-20
3.10 Configuring the PCI Host Bridge and Arbitration 3-20
3.11 Disabling Internal Peripherals. 3-21
CHAPTER 4 SYSTEM ADDRESS MAPPING 4-1
4.1 OVEIVIEW. . ottt et e e e e e e 4-1
4.2 ReQISIEIS ..\t 4-2
4.3 OPEratiON . .\ttt e 4-3
4.3.1 Programming External Memory, Buses, and Chip Selects 4-4
4.3.2 Programmable Address Region (PAR) Registers 4-5
4.3.3 MemOry SPacCettt 4-7
4331 SDRAMSpPACE.t 4-8
4332 ROM/FlashSpace, 4-8
4333 GPBusMemorySpace..............c.coiiunnnn. 4-9
4334 PClIBusMemorySpaceiu.. 4-9
4.3.3.5 Memory-Mapped Configuration Region (MMCR)
Registers Space. 4-9
434 1O SPaCE ..o 4-11
4.3.4.1 Configuration Base Address (CBAR) Register 4-11
4.3.4.2 PClConfigurationSpace 4-12
4343 PCIIOSPaceot 4-12
4.3.4.4 PC/AT-Compatible 1/0O Peripherals Region. 4-13
4345 GPBusl/ORegion 4-15
4.3.5 Configuration Information 4-15
4.3.5.1 Configuring ROM/Flash Space 4-15
4.3.5.2 Configuring SDRAM Address Space. 4-15
4.3.5.3 Configuring GP Bus Peripheral Space. 4-16
4.3.5.4 Configuring the Elan™SC520 Microcontroller
for Windows® Compatibility 4-17
4.3.5.5 Configuring PCI Bus Devices. 4-18
4.3.6 Interrupts 4-18
4.3.7 Software Considerations 4-18
4.4 Initialization. 4-21

Vi Elan™SC520 Microcontroller User’s Manual

Table of Contents

CHAPTER5 CLOCK GENERATION AND CONTROL 5-1
Bl OVBIVIBW. . ottt 5-1
5.2 Block Diagram 5-2
5.3 System DeSION . . . o oo 5-3

531 ClockPinLoadingo, 5-4

5.3.2 Selectinga Crystal 5-4
5.3.2.1 Running the Elan™SC520 Microcontroller

at33.333MHz 5-5

5.3.3 Bypassing Internal Oscillators 5-5

B4 REQISIEIS . .t 5-6

5.5 0Operation 5-7

551 Internal CIoCKS i 5-7

5511 CPU. . 5-7

5512 PCIBUS 5-7

5.5.1.3 SDRAMController. 5-7

5.5.1.4 ROM/Flashinterface 5-7

5515 GPBUS......ci 5-7

55.1.6 GP-DMAController iy 5-8

5.5.1.7 Programmable Interval Timer. 5-8

5.5.1.8 General-Purpose Timersy 5-8

5.5.1.9 Software Timer. iy 5-8

5.5.1.10 Watchdog Timer. i 5-8

5.5.1.11 Real-TimeClock iy 5-8

5.5.1.12 UART Serial Ports i 5-8

5.5.1.13 Synchronous Serial Interface. 5-8

5.5.2 Using the CLKTIMER[CLKTEST]Pin, 5-9

5.6 Initialization. 5-9

CHAPTER 6 RESET GENERATION 6-1
B.1 OVEIVIEW. . ottt 6-1
6.2 Block Diagramt e 6-1
6.3 SyStemM DeSIgN e 6-2
6.4 REQISIEIS ...ttt e e 6-3
6.5 Operation e 6-3

6.5.1 SystemReset 6-4
6.5.2 System Reset with SDRAM Retention 6-6
6.5.3 SOftCPUReESet. i e 6-7
654 GPBuUusSReset....... 6-7
6.5.5 PCIReset 6-7
6.5.6 RTCReset i 6-7
6.5.7 Determining Reset Sourcesuiiiiiiea... 6-8
6.5.8 CPUA20 Gate SUPPOIt e 6-8
6.5.9 Clocking Considerationscviiiiiiinna... 6-8
6.5.10 Software Considerations 6-8
6.5.11 LatenCyt 6-9
6.6 Initialization. 6-9
Elan™SC520 Microcontroller User's Manuall Vii

AMDZ\

Table of Contents

CHAPTER 7

CHAPTER 8

CHAPTER 9

Am5,86® CPU 7-1

.1 OVBIVIBW. . oottt e e 7-1

7.2 Block Diagram 7-1

7.3 REQISIEIS .. 7-1

T4 OPErationt 7-3

7.4.1 Floating Point Unit (FPU), 7-3

7.4.2 Cache Memory Management 7-4

7.4.3 Clocking Considerations, 7-4

T.4.4 INtEITUPLS ... 7-5

745 LatenCy 7-5

7.5 Initialization. 7-5

751 HardCPURESEtot e 7-5

752 Soft CPUReset 7-5

SYSTEM ARBITRATION 8-1

8.1 OVEIVIBW. . . oo e 8-1

8.2 Block Diagram e 8-1

8.3 REgiSIerS .. i 8-2

8.4 Operation 8-3

8.4.1 Operating Modes 8-3

8.4.1.1 Nonconcurrent Arbitration Mode 8-3

8.4.1.2 Concurrent Arbitration Mode 8-4

8.4.2 CPUBUSArbiter 8-5

8.4.2.1 CPU Arbitration Protocol 8-5

8.4.22 CPUCacheSnoopingouuiuiiuenanainny 8-6

8.4.2.3 Accessing the PCl Host Bridge Target. 8-6

8.4.2.4 GP Bus DMA Arbitration 8-7

8.4.2.5 Arbitration During Clock Speed Changes 8-7

8.4.3 PCIBUSArIDbIter 8-7

8.4.3.1 PCI Bus Arbitration Protocol 8-8

8432 BusParking i 8-10

8.4.3.3 Rearbitration 8-10

8.4.4 BUSCYCIES 8-11

8.4.41 CPUBusArbitration. 8-11

8.4.4.2 CPU Bus Cache Write-Back 8-12

8.4.4.3 CPU-to-PCICycle i, 8-14

8.4.44 PCIBusArbitration 8-15

8.4.4.5 PCI Bus Arbitration Parking. 8-16

8.4.4.6 Nonconcurrent Mode Arbitration 8-18

8.4.5 INterrupts 8-19

8.4.6 Software Considerations 8-19

847 LatenCy 8-20

8.4.7.1 Simple Rotating Priority Latency 8-20

8.4.7.2 High-Priority Queue Latency 8-21

8.4.7.3 Low-Priority Queue Latency. 8-21

8474 CPULAtenCy ... 8-21

8.4.7.5 Nonconcurrent Arbitration Mode Latency 8-21

8.4.7.6 Concurrent Arbitration Mode Latency 8-22

8.4.7.7 Concurrent Arbitration Mode Bus Parking Latency . . . 8-22

8.5 Initialization. 8-22

PCI BUS HOST BRIDGE 9-1

9.1 OVEIVIBW. . . o oo e 9-1

9.2 Block Diagram e 9-1

9.3 System DesigN 9-2

9.3.1 PCICIOCKINGot 9-5
9.3.1.1 Running the Elan™SC520 Microcontroller

at33.333MHz 9-6

viii

Elan™SC520 Microcontroller User’s Manual

Table of Contents AMD:'

CHAPTER 10

9.4 REQISIEIS . .\t 9-7
9.5 Operationt 9-8
9.5.1 Unsupported PCI Bus Functions 9-8
9.5.1.1 Unsupported PCI Bus Configuration Registers 9-9

9.5.2 Configuration Information 9-9
9.5.2.1 Generating PCI Bus Configuration Cycles. 9-10

9.5.3 Elan™SC520 Microcontroller's Host Bridge as PCI Bus Master .9-11
9531 WritePosting i 9-11

9532 ReadCycles........ ... i 9-12

9.5.3.3 Delayed Transaction Support. 9-12

9.5.3.4 HostBridge MasterBusCycles. 9-12

9.5.4 Elan™SC520 Microcontroller's Host Bridge as PCI Bus Target . . 9-18
9.5.4.1 PCI Host Bridge Target Address Space............ 9-18

9.5.4.2 PCIBus Command Support 9-19

9543 DEVSELTIMING....... ...ttt 9-19

9.5.4.4 Delayed Transaction Support. 9-19

9545 AddressFIFO. i 9-20

9.5.4.6 PCI Host Bridge FIFOs and Prefetching 9-20

9547 BurstOrdering ... 9-21

9.5.4.8 Maintaining Data Coherency 9-21

9.5.49 PClI Host Bridge TargetBus Cycles. 9-22

955 INterruptSo 9-27
9.5.6 LatenCy 9-28
9.5.6.1 MasterLatency 9-28

9.5.6.2 TargetlLatency........... ... 9-28

9.6 Initialization. 9-29
SDRAM CONTROLLER 10-1
L1012 OVEIVIEW. . o oottt e e e e e 10-1
10.2BloCK Diagramttt 10-1
10.3System Design . . . oot 10-1
10.3.1 SDRAM PINS 10-5
10.3.2 SDRAMCIOCKING ...ttt 10-6
10.3.3 SDRAMLoAdINg oot 10-8
104 REQISIEIS oot 10-10
10.50perationo 10-11
10.5.1 SDRAM SUPPOIt . . . oot e 10-11
10.5.2 SDRAM AAAressingo 10-12
10.5.2.1 Supported SDRAM Devices. 10-13

10.5.2.2 Page Size.t 10-16

10.5.3 Error Correction Code (ECC)o, 10-16
10.5.4 Buffering 10-17
10.5.5 SDRAM Control Configuration 10-18
10.5.5.1 RefreshControl 10-18

10.5.5.2 Drive-Strength Selection 10-19

10.5.5.3 Write Buffer TestMode 10-19

10.5.5.4 Operation Mode Select 10-20

10.5.6 SDRAM Timing Configuration 10-20
10.5.6.1 CASLatency (Cp) .. .ovveeeeeiieeaeaannn. 10-20

10.5.6.2 RAS Precharge (TRp) -« -« v vvvvviieaeann.. 10-21

10.5.6.3 RAS-t0-CAS Delay (TRED) - « « « « v vvnnnnnnn. 10-21

10.5.6.4 RAS-t0-RAS or Auto-Refresh-to-RAS (Tge) - 10-21

10.5.6.5 MiniMumM RAS (TRAS): -+« «« v v eieeeeaeen 10-22

10.5.7 BusCycles 10-22
10.5.7.1 SDRAMBurstReadCycle..................... 10-22

10.5.7.2 SDRAM WriteCycle. 10-23

10.5.7.3 ECCSDRAMCycles 10-24

10.5.7.4 SDRAM Auto RefreshCycle 10-26

Elan™SC520 Microcontroller User’s Manual ix

AMDZ\

Table of Contents

10.5.7.5 SDRAM Mode Register Access Cycles........... 10-27

10.5.8 INterruptso 10-27

10.5.9 Software Considerations 10-28

10.5.9.1 ECCEITOrS. ..o vttt it 10-28

10.5.9.2 Buffer Disabling During SDRAM Configuration 10-28

10.5.9.3 Write Protection. 10-28

10.5. 10 LAtENCY . o v v et e 10-28

10.6 Initialization. e 10-29

10.6.1 Programmable Reset 10-29

10.6.2 SDRAM Device Initialization 10-30

10.6.2.1 Operation Mode Select 10-30

10.6.2.2 NOPCommandoiuuiniainann.. 10-31

10.6.2.3 Precharge Command. 10-31

10.6.2.4 Auto RefreshCommand 10-31

10.6.2.5 Mode Register Programming. 10-31

10.6.3 BOOtProCessttt 10-32

10.6.4 SDRAM Sizing Algorithm 10-32
10.6.4.1 Determining the Number of Columns

foran ExternalBank 10-33

10.6.4.2 Determining the Number of Internal Banks 10-34

10.6.4.3 Determining the True External Bank Ending Address 10-35

CHAPTER 11 WRITE BUFFER AND READ BUFFER 11-1

1L L OV VIBW. . ottt e e e 11-1

11.2Block Diagramt 11-2

11.3System DeSIgN . . . v e 11-3

114 REQIS OIS ottt e 11-4

1L 5 0peratioNn . ..ot 114

11.5.1 Write Buffer 11-5

11.5.1.1 Write Buffer Disabled 11-5

11.5.1.2 Write BufferEnabled 11-5

11.5.1.3 Write Buffer Watermark 11-9

11.5.2 Read Buffer and the Read-Ahead Feature 11-10

11.5.2.1 Read-Ahead Feature Disabled. 11-10

11.5.2.2 Read-Ahead Feature Enabled 11-10

11.5.3 DMA Considerationst 11-11

11.5.4 PClConsiderations, 11-12

11.5.4.1 Write Cycles. 11-12

11542 Read Cycles. 11-12

11.5.,5 Software Considerations 11-13

11.5.6 SDRAM Bandwidth Improvements 11-13

11.6 Initialization.o 11-15

CHAPTER 12 ROM/FLASH CONTROLLER 12-1

T2, L OVEIVIEBW. « o ottt et e e e 12-1

12.2Block Diagramo e 12-2

12.3System DeSigN oot 12-2

12.3.1 Voltage Isolation 12-3

12,4 REQISIEIS ottt 12-5

12.50peration 12-5

12.5.1 ROM SUPPOIT . ..o 12-5

12.5.1.1 Supported Device TYpeS, 12-6

12.5.2 ROM Control and Timing Configuration 12-7

12.5.2.1 ROMLocation, 12-7

12522 ROMWidth 12-7

12.5.2.3 OperatingMode. i, 12-7

12.5.2.4 AccessTimiNgot 12-8

Elan™SC520 Microcontroller User’s Manual

Table of Contents AMD:'

CHAPTER 13

1253 BUSCYCIES ..o 12-9
12.5.3.1 Single CPURead AcCeSScvviuun.... 12-9
12.5.3.2 Page-Mode Read ACCESS 12-10
12.5.3.3 Cache-LineFill. 12-11
12.5.3.4 Writing to Flash Devices 12-11
12.5.4 Software Considerations 12-12
12.5.4.1 AddressDecoding 12-12
12.5.4.2 Programming Flash Memory 12-12
1255 LAteNCY . . vt 12-13
12.6 Initialization. 12-14
GENERAL-PURPOSE BUS CONTROLLER 13-1
13, OVEIVIEW. .« o ottt e e 13-1
13.2BlocKk Diagramt 13-1
13.3 System DesigN . . . oo 13-1
13.3.1 GPBUSLOAdINGttt 13-4
13.3.2 Voltage Translation 13-4
18,4 REQIStEIS . . oo 13-5
13.50perationo 13-6
13.5.1 Programmable Bus Interface Timing 13-7
13.5.1.1 Timing Requirements.o ... 13-7
13.5.1.2 Using GPRDY with Programmable Timing. 13-8
13.5.1.3 Using GP Bus Echo Mode with Programmable Timing 13-8
13.5.2 1/O-Mapped and Memory-Mapped Device Support 13-9
13.5.3 Chip Select Qualification 13-9
13.5.4 Data Sizing and Unaligned Accesses 13-9
13.5.5 Sharing the Address and Data Bus

with the ROM/Flash Controller 13-10
13.5.6 GPBusEchoMode i, 13-10
13.5.7 DMAINterface 13-11
13.5.8 Usage SCeNariosouuiiiiiiae .. 13-11
13.5.8.1 Compatibility with Common ISA Devices. 13-11
13.5.8.2 Interfacing with a Super 1/O Controller. 13-13

13.5.8.3 Interfacing with an AMD Enhanced
Serial Communications Controller (8 MHz) 13-14
13.5.9 BUSCycles e 13-16
13.5.9.1 8-Bit Data Access of an 8-Bit I/O Device 13-16
13.5.9.2 16-Bit Data Access of a 16-Bit I/O Device......... 13-17
13.5.9.3 16-Bit Data Access of an 8-Bit I/O Device. 13-17
13.5.9.4 32-Bit Data Access of an 8-Bit I/O Device. 13-18
13.5.9.5 32-Bit Data Access of a 16-Bit I/O Device......... 13-18
13.5.9.6 8-Bit Data Access of a 16-Bit I/O Device 13-19
13.5.9.7 GPIOCS16 and GPMEMCS16 Timing. 13-19
13.5.9.8 WaitStates. 13-20
13.5.20 INterrupPtS . .o oo 13-21
13.5. 11 LAtENCY v v v e e et 13-21
13.5.11.18/16-BitGP Bus Width. 13-21
13.5.11.2SlowGP BusCycles 13-21
13.5.11.3Noncacheable GPBuUS. 13-21
13.6 Initialization. e 13-22

Elan™SC520 Microcontroller User’s Manual Xi

AMDZ\

Table of Contents

CHAPTER 14 GP BUS DMA CONTROLLER 14-1
L4, L OVeIVIBW. . o i e e 14-1
14.2BloCK Diagramot 14-1
14.3 System DesigN . . . oot 14-3
144 REQISIEIS ottt 14-4

14.4.1 Memory-Mapped Registers 14-4
14.4.2 Direct-Mapped Registersc. i 14-6
TA50Perationo 14-8
14.5.1 GP-DMA Transfers i 14-8
14.5.1.1 GP-DMAInitiators, 14-9
14.5.1.2 GP-DMA ChannelMapping.................... 14-10
14.5.2 Operating Modest 14-10
14.5.2.1 Normal GP-DMAMode 14-10
14.5.2.2 Enhanced GP-DMAMode 14-11
14.5.3 Addressing GP-DMA Channels 14-11
14.5.3.1 Addressing In Normal GP-DMA Mode. 14-11
14.5.3.2 Addressing In Enhanced GP-DMA Mode 14-12
14.5.4 GP-DMA TransferModes 14-12
14.5.4.1 Single TransferMode 14-12
14.5.4.2 Demand TransferMode 14-12
14.5.4.3 Block TransferMode 14-13
14.5.4.4 Transfer Typeso 14-13
14.5.4.5 Automatic Initialization Control. 14-14
14.5.4.6 Priority 14-15
14.5.4.7 BufferChaining 14-15
1455 BUSCycles 14-16
14551 GPBUsI/Oto SDRAM. i, 14-16
14.5.5.2 GP-DMA Read with Cache Hit. 14-17
1456 GPBusEchoMode i 14-17
14.5.7 Clocking Considerations i .. 14-18
1458 INterrupts 14-18
14.5.9 Software Considerationsiiiiirnnn 14-18
14510 LAtENCY . o v v e e e 14-18
14.5.10.1 Nonpreemptive Latency. 14-18
14.5.10.2 Preemptive Latencyo 14-19
14.6 Initialization. e 14-19
14.6.1 Example Configurations 14-19

14.6.1.1 Configuring an 8-Bit Channel
in Normal GP-DMAMode 14-19

14.6.1.2 Configuring a 16-Bit Channel
in Normal GP-DMAMode 14-20

14.6.1.3 Configuring an 8-Bit Channel
in Enhanced GP-DMAMode 14-20

14.6.1.4 Configuring a 16-Bit Channel
in Enhanced GP-DMAMode 14-21

CHAPTER 15 PROGRAMMABLE INTERRUPT CONTROLLER 15-1
I5. 1 OVEIVIEW. . . oottt e 15-1
15.2Block Diagram e 15-2
15.3System Designo 15-2
15,4 REQIStEIS . . o o 15-4
15.50peration 15-7

15.5.1 Interrupt Flow Sequence, 15-7
15.5.2 Interrupt SOUICeS i 15-8
15.5.2.1 Hardware-Generated Interrupts. 15-8
15.5.3 Interrupt Source Routingt 15-10
15.5.3.1 Polarity Inversion of Interrupt Requests. 15-10

Xii

Elan™SC520 Microcontroller User’s Manual

Table of Contents AMD:'

CHAPTER 16

CHAPTER 17

15.5.3.2 PC/AT Compatibility 15-12

15.5.3.3 Floating PointErrors 15-12

15.5.3.4 Disabling the Slave Controllers 15-13

15.5.4 Edge-Triggered or Level-Sensitive Interrupts 15-13

1555 InterruptSharing 15-13

15.5.6 Non-Maskable Interrupts and Routing 15-14

155.6.1 SharingNMIs. i 15-14

15.5.7 Priority TYPeS . ..t 15-16

15.5.8 Configuration Information 15-16

15.5.8.1 Programmingt 15-16

15.5.8.2 PC/AT Configuration 15-18

15.5.9 Software Considerations i, 15-18

15.5.9.1 InterruptSharing 15-18

15.5.9.2 Disabling the Slave Controllers 15-19

15.5.9.3 Detecting Invalid Interrupt Requests 15-19

15.5.9.4 Floating Point Unit Error Handling 15-19

15.6 Initialization. 15-20

PROGRAMMABLE INTERVAL TIMER 16-1

16. 1 OVEIVIEW. . o ottt e e 16-1

16.2Block Diagramt 16-1

16.3 System Design . . . oo 16-1

16.4 REQISIEIS . ot 16-2

16.50Perationot 16-3

1651 PITChannelO...... e 16-3

16.5.2 PITChannel 1 e 16-3

16.5.3 PITChannel 2. e 16-4

16.5.4 OperatingModesc. i, 16-4

16.5.4.1 Mode O: Interrupt on Terminal Count. 16-4

16.5.4.2 Mode 1: Hardware-Retriggerable One-Shot 16-4

16.5.4.3 Mode 2: Rate Generator 16-5

16.5.4.4 Mode 3: Square Wave Mode 16-5

16.5.4.5 Mode 4: Software-Triggered Strobe. 16-5

16.5.4.6 Mode 5: Hardware-Triggered Strobe 16-5

16.5.5 Clocking Considerations i .. 16-6

16.5.5.1 Internal Clock. i 16-6

16.5.5.2 External Clock 16-6

16.5.6 INterrupts 16-6

16.5.7 Software Considerationsc.. ... 16-6
16.5.7.1 Using the PIT Clock Source in PC/AT-Compatible

SYStEMS 16-6

16.6 Initialization. 16-7

GENERAL-PURPOSE TIMERS 17-1

170 OVRIVIEW. . o oot e e e e e e 17-1

17.2Block Diagramo e 17-1

17.3System Designo e 17-1

174 REQIStEIS o ot 17-2

17.50peration 17-3

1751 GPTimerOandGP Timerl, 17-3

1752 GP TIMer2 ... 17-4

17.5.3 OperatingModes i 17-4

17.5.3.1 Interrupt on Terminal CountMode 17-4

17.5.3.2 Hardware RetriggerMode 17-4

17.5.3.3 Alternate Compare Mode. 17-4

17.5.3.4 SquareWaveMode 17-4

17.5.3.5 ContinuousMode. 17-4

17.5.3.6 PrescalerMode 17-4

Elan™SC520 Microcontroller User’s Manual Xiii

AMDZ\

Table of Contents

CHAPTER 18

CHAPTER 19

CHAPTER 20

17.5.4 Configuration Information, 17-5
17.5.5 Clocking Considerations i, 17-5
17.55.1 Internal Clock. i 17-5

17.5.5.2 ExternalClock i, 17-6

17.5.6 INterrupts 17-6
17.5.7 Software Considerations 17-6
17.5.7.1 Combining GP Timer Count Elements. 17-6

17.5.7.2 Reading the Cascaded 32-Bit Timer 17-6

17.6 Initialization. 17-8
SOFTWARE TIMER 18-1
18 L OVEIVIEW. . o ottt e 18-1
18.2Block Diagramo e 18-1
18.83 REQISIEIS . . oo 18-2
18.40Peration oo 18-2
18.4.1 Configuration Information, 18-3
18.51nitialization. 18-3
WATCHDOG TIMER 19-1
10, L OVeIVIBW. . ot e 19-1
19.2Block Diagramot t 19-1
193 REQISIEIS oot 19-2
19.40PEerationottt 19-3
19.4.1 Configuration Information, 19-3
19.4.1.1 Keyed SEQUENCESttt 19-3

19.4.1.2 Interrupt Request Generation 19-4

19.4.1.3 System ResetGeneration 19-4

19.4.1.4 Time-OutDuration........... ..., 19-4

19.4.2 INtEITUPES . .o 19-5
19.4.3 AMDebug™ Technology Interface 19-5
19.4.4 Software Considerationsc.coiiiiiiie... 19-5
19.5Initialization. e 19-6
REAL-TIME CLOCK 20-1
20. 1 OVEIVIBW. . . oot e e 20-1
20.2Block Diagram e 20-1
20.3System DesigN 20-3
20.3.1 Backup Battery Considerations 20-3
20.3.1.1 System with an External Backup Battery........... 20-3

20.3.1.2 System without an External Backup Battery 20-4

20.3.2 Selecting and Interfacing a 32.768-kHz Crystal 20-5
20.3.3 UsinganExternal RTC 20-5
20.4 REgISIEIS . . it 20-6
20.50peration 20-7
20.5.1 Configuration Information 20-7
20.5.1.1 Configuringthe Hour Format.................... 20-7

20.5.1.2 Programming the Dateand Time................. 20-8

20.5.1.3 Generating Periodic Interrupts. 20-8

20.5.1.4 Using the Alarm Function 20-9

20.5.1.5 Handling Year 2000 Issuesccv..... 20-9

20.5.2 Clocking Considerationsccciiieiiiinn... 20-9
20.5.3 Interrupts 20-9
20.5.4 Software Considerations 20-10
20.5.4.1 Initializing the RTC DividerChain 20-10

20.5.4.2 Accessingthe CMOS Memory.................. 20-10

20.5.4.3 Legacy NMI Enable BitMoved. 20-10

20.6 Initialization. 20-10
20.6.1 RTC RESEtot e 20-11

Xiv

Elan™SC520 Microcontroller User’s Manual

Table of Contents AMD:'

CHAPTER 21 UART SERIAL PORTS 21-1
2L L OVEIVIBW. .« o ottt 21-1
21.2Block Diagramo 21-1
21.3SYSteM DESION . . . o oot 21-2
2L A REgISIEIS .ttt 21-3
21.50peration e 21-5

21.51 Data TranSmisSSIONttt e 21-6
21.5.1.1 16450-Compatible UART Mode. 21-6
21.5.1.2 16550-Compatible UART Mode. 21-7

21.5.2 DataReception 21-7
21.5.2.1 16450-Compatible UART Mode. 21-7
21.5.2.2 16550-Compatible UART Mode. 21-7

2153 ErrorHandling 21-8
21.53.1 Parity Error.o 21-8
21.53.2 FramingError. 21-8
21.5.3.3 BreakIndication............. 21-8
21.53.4 ErrorReportingc.o i 21-8

21.5.4 Configuration Information 21-9
21541 BaudRate 21-9
21.5.4.2 Hardware Flow Control 21-9
21.54.3 OperatingModes, 21-9

2155 DMAINterface 21-10
21551 TransmitDMA 21-10
21552 Receive DMA. 21-10

21.5.6 Clocking Considerations, 21-10

21.5.7 INeIrUPLS ... o e 21-10
21.5.7.1 Serial PortiInterrupts 21-12
21.5.7.2 DMAInterrupts. 21-12
21.5.7.3 InterruptDisable. 21-13

21.6 Initialization. 21-13

CHAPTER 22 SYNCHRONOUS SERIAL INTERFACE 22-1
22 1 0VEIVIBW. .« o oot 22-1
22.2Block Diagram 22-1
22.3System DesigNn 22-1
22 A REgIS IS . ot 22-2
22.50peration 22-3

22.5.1 Usage SCENAIOS ... v ittt e 22-3
22.5.1.1 Four-Pininterface 22-3
22.5.1.2 Three-Pinlinterface 22-3

22.5.2 Configuration Information 22-5
22521 BitOrder.ot 22-5
22522 ClockldleState 22-5
22523 ClockPhase. i 22-5

2253 BUSCYCIES ..o 22-5
2253.1 4-BitReadCycle i, 22-6
22.5.3.2 Burst, 16-Bit, and 32-BitCycles.................. 22-7

22.5.4 Clocking Considerationscciiiiieeiinn.. 22-7

2255 INterrupts 22-7

22.5.6 Software Considerations 22-8

22.6 Initialization. e 22-8

Elan™SC520 Microcontroller User’s Manual XV

AMDﬂ Table of Contents

CHAPTER 23 PROGRAMMABLE INPUT/OUTPUT 23-1
23 L OVEIVIEW. . . ottt 23-1
23.2Block Diagramo 23-1
23.3SYSteM DESION . . . o oot 23-2
23 A REgISIEIS . 23-4
23.50peration 23-4

23.5.1 Configuration Information 23-5
23.5.1.1 PIOPinsand Simplelnput. 23-5

23.5.1.2 PIOPinsand SimpleQutput 23-5

23.5.2 Software Considerations 23-5
23.61nitialization. 23-6

CHAPTER 24 SYSTEM TEST AND DEBUGGING 24-1
24, L OVEIVIBW. . o oottt e 24-1
242 SYSteM DESION . . . o oot 24-1

2421 Loadingo 24-2
24 3 REgISIEIS . . it 24-2
24 40PEratioN . . . oo 24-3

2441 SystemTestMode i 24-3

24.4.1.1 Pin Functions in System Test Mode. 24-3

24.4.1.2 Using the System Test Mode Interface 24-4

24.4.1.3 SDRAM Write Cycle in System Test Mode 24-4

24.4.1.4 SDRAM Read Cycle in System Test Mode 24-5

24.4.1.5 Tracing Transactions on the ROM Interface......... 24-5

24.4.1.6 Tracing Transactions on the GP Bus Interface. 24-6

24.4.2 Write Buffer TestMode i i 24-7

24.4.2.1 Using the Write Buffer Test Mode Interface 24-7

24.4.2.2 SDRAM Write Cycle in Write Buffer Test Mode. 24-8

24.4.2.3 SDRAM Read Cycle in Write Buffer Test Mode. 24-8

24.4.3 Other Debugging Features, 24-10

24.4.3.1 Nonconcurrent Arbitration Mode 24-10
24.4.3.2 Echoing Integrated Peripheral Accesses

onthe GPBUS 24-10

24.4.3.3 Summary of Additional System Debugging Features. 24-10

24.4.4 Software Considerations 24-11

2445 LateNCYot 24-11
24,5 nitialization. 24-12

CHAPTER 25 BOUNDARY SCAN TEST INTERFACE 25-1
25 1 0VEIVIBW. . o o ot 25-1
25.2Block Diagram 25-1
25.3System DesigNn 25-2

25.3.1 JTAG Pin Strappingo e 25-2
25 A REgISIeIS . o i 25-2
25.50peration 25-2

25.5.1 Instruction Register i 25-3

25.5.1.1 Implemented Instructions. 25-3
25.5.2 Configuration Information 25-5
25.5.2.1 InstructionPath 25-5
25522 BypassPath., 25-5
255.2.3 MainDataScanPath.......................... 25-5
25.5.2.4 Serial Debug Port Data Register 25-14
25.5.2.5 Device Identification Register 25-14
25.5.3 Test Access Port (TAP) Controller 25-15
25.5.3.1 TAP Controller States. 25-15

2554 BUSCYCIES 25-19

25.5.5 Clocking Considerationscciireninn... 25-20
25.6 Initialization. 25-20

XVi Elan™SC520 Microcontroller User’s Manual

Table of Contents AMD:'

CHAPTER 26 AMDebug™ TECHNOLOGY 26-1
26. L OVEIVIEW. . . o oottt e 26-1

26.2Block Diagram 26-2

26.3 SYSteM DESION . . . o oot 26-2

26.3.1 Connecting the AMDebug™ Port 26-3

26.3.2 Mechanical Specifications for the Target Connector 26-5

26.3.3 Locating the Connector on the Target System 26-5

26.40PErationo 26-6

26.41 On-ChipTraceCache 26-7

26.4.2 Software Performance Profiling 26-7

INDEX Index-1

Elan™SC520 Microcontroller User’s Manual XVil

AMDA

Table of Contents

LIST OF FIGURES

Figure 1-1
Figure 1-2

Figure 1-3
Figure 1-4
Figure 1-5

Figure 2-1
Figure 2-2
Figure 3-1
Figure 3-2
Figure 3-3
Figure 4-1
Figure 4-2
Figure 4-3
Figure 5-1
Figure 5-2
Figure 5-3
Figure 5-4
Figure 5-5
Figure 6-1
Figure 6-2
Figure 6-3
Figure 7-1
Figure 8-1
Figure 8-2
Figure 8-3
Figure 8-4
Figure 8-5
Figure 8-6
Figure 8-7
Figure 8-8
Figure 8-9
Figure 8-10
Figure 8-11
Figure 8-12
Figure 9-1
Figure 9-2
Figure 9-3
Figure 9-4
Figure 9-5
Figure 9-6
Figure 9-7
Figure 9-8
Figure 9-9
Figure 9-10
Figure 9-11
Figure 9-12
Figure 9-13
Figure 9-14
Figure 9-15
Figure 9-16
Figure 10-1
Figure 10-2
Figure 10-3
Figure 10-4

Elan™SC520 Microcontroller Block Diagramcouuieenn.... 1-3
Elan™SC520 Microcontroller-Based Smart Residential Gateway

Reference DesSIgN 1-10
Elan™SC520 Microcontroller-Based Thin Client Reference Design. 1-11
Elan™SC520 Microcontroller-Based Digital Set Top Box Reference Design 1-12
Elan™SC520 Microcontroller-Based Telephone Line Concentrator

Reference DesSIgNot e 1-13
Logic Diagram by Interface e 2-2
Logic Diagram by Default Pin Function e, 2-3
Initial Near Jump EXample. 3-6
Programmable Address Region (PAR) Register Format. 3-10
Programmable Address Region (PAR) Register Worksheet 3-11
Programmable Address Region (PAR) Register Format. 4-6
System Memory Map. 4-7
SYStEM /O Map . . . oot 4-11
Clock Source Block Diagram e e e e 5-2
System Clock Distribution Block Diagram i 5-3
Bypassing the 32.768-kHz Oscillator. i e 5-5
Bypassing the 33-MHz Oscillator e 5-6
Clock Routing forthe CLKTEST Pin o e e e 5-9
Reset Controller Block Diagram it e 6-2
PRGRESET TiMiNg. . . oot e e e e 6-6
Power-On Reset Sequence of EVENtS. ittt e e 6-9
Am5,86® CPU Block Diagramot 7-2
System Arbitration Block Diagram 8-2
Skipped Master Example. 8-5
CPU Bus Rotating Priority QUeUE 8-6
External PCl Master Arbitration QuUeUesSt 8-9
Host Bridge Master Arbitration Queue. e 8-9
CPU BUS Arbitration e 8-11
CPUBus Cache Write-Back e 8-13
CPU-O-PCICyYCle 8-14
PCIBus Arbitration 8-15
PCI Bus Concurrent Mode Arbitration Parking 8-16
Nonconcurrent Mode Arbitration 8-18
Simple Rotating Priority QUEUE 8-20
PCl Interface Block Diagramo e 9-2
Elan™SC520 Microcontroller Connection to an External PCI Bus Target. 9-3
Elan™SC520 Microcontroller Connection to an External PCI Bus Master 9-4
Elan™SC520 Microcontroller SERR and PERR Connection 9-5
PCI Bus Clocking Example 1: Lightly Loaded System 9-6
PCI Bus Clocking Example 2: Heavily Loaded System. 9-6
PCI Configuration Address (PCICFGADR) Register 9-10
CPURead Cycletothe PCIBUS. e 9-13
CPU Read Cycle to the PCI Bus with External TargetRetry. 9-14
CPU Posted Write Cycletothe PCIBUS ot 9-15
Am5,86 CPU Non-Posted Write Cycletothe PCIBus 9-16
CPU Write Cycles to Internal PCI Bus Configuration Registers 9-17
CPU Read Cycles from Internal PCI Bus Configuration Registers 9-18
External PCI Bus Master Posted Write to SDRAM 9-23
External PCI Master SDRAM Read (Delayed Transaction). 9-24
PCIl Host Bridge Target DISCONNECE.t e e 9-26
SDRAM Controller Block Diagram.ot e 10-2
Detailed Block Diagram of SDRAM Controller. 10-3
SDRAM Bank Configuration e 10-4
Example Configuration of a 168-Pin SDRAMDIMM 10-5

XViii

Elan™SC520 Microcontroller User’s Manual

AMDA

Table of Contents

Figure 10-5 SDRAM Clock Generation.ttt e e e e 10-7
Figure 10-6 Alternate SDRAM Clock Generation with External Clock Driver. 10-7
Figure 10-7 SDRAM Burst Read Cycle (Read-Ahead Feature Disabled) (Page Miss/Page Hit). . 10-22
Figure 10-8 SDRAM Write Cycle (Write Buffer and ECC Disabled) (Page Miss/page Hit) 10-23
Figure 10-9 SDRAM CPU Burst Write (Write Buffer and ECC Disabled) (Page Miss/Page Hit) . . 10-24
Figure 10-10 SDRAM Burst Read Cycle with ECC Enabled. 10-25
Figure 10-11 SDRAM Read-Modify-Write Cycle (for Data Write) with ECC Enabled (Page Hit). . . 10-26
Figure 10-12 SDRAM Auto Refresh Cycle e i 10-27
Figure 10-13 SDRAM Mode RegiSter ACCESS. . . .o v vt ittt et 10-27
Figure 11-1 Write Buffer and Read Buffer Block Diagram (SDRAM Subsystem)............. 11-2
Figure 11-2 Write Buffer and Read Buffer Block Diagram 11-3
Figure 11-3 Write Buffer Merging Example. i e i 11-7
Figure 11-4 Write Buffer Collapsing Example. i e e 11-8
Figure 11-5 Write Buffer Read-Merging Example. 11-9
Figure 11-6 Bus Thrashing with Write Buffer Disabled and Enabled 11-14
Figure 12-1 ROM Controller Block Diagram i iiiiee e 12-2
Figure 12-2 Voltage Isolation Examples e 12-4
Figure 12-3 Page-Mode ROM: Fetching Four Words from a 16-BitROM. 12-6
Figure 12-4 Non-Page-Mode ROM: Fetching Four Words from a 16-Bit ROM. 12-8
Figure 12-5 Page-Mode ROM: Fetching Four Doublewords (Aligned) from a 32-Bit ROM. 12-8
Figure 12-6 Page-Mode ROM: Fetching Four Doublewords (Unaligned) from an 8-Bit ROM. . . .12-8
Figure 12-7 Multiple Accesses: Data Amounts Smaller than One Doubleword (2 Bytes)

froman 8-Bit ROM. e 12-10
Figure 12-8 Page Access for Fetching Four Doublewords from a 32-Bit ROM

(Burst Sequence: 2-1-1-1) 12-10
Figure 12-9 Page Access for Fetching Two Doublewords from a 16-BitROM 12-11
Figure 12-10 Cache-Line Fill (Fetching Four Doublewords from a 32-Bit ROM). 12-11
Figure 12-11 Word Write Cycle to Flash Memory. e 12-12
Figure 13-1 GP Bus Controller System Block Diagram 13-2
Figure 13-2 Example: Using an External Data Buffer to Address Excess Loading 13-4
Figure 13-3 Example: Using a Voltage Translator. i, 13-5
Figure 13-4 GP Bus Timing FOrmato e 13-8
Figure 13-5 Elan™SC520 Microcontroller Interfacing with a Super 1/O Controller. 13-13
Figure 13-6 Timing Diagram of a Super /O Interface. 13-14
Figure 13-7 Elan™SC520 Microcontroller Interfacing with an Am85C30. 13-15
Figure 13-8 Timing Diagram of an Am85C30 Interface 13-16
Figure 13-9 8-Bit Data Access of an 8-Bitl/O Device. 13-16
Figure 13-10 16-Bit Data Access of a 16-Bit /O Device., 13-17
Figure 13-11 16-Bit Data Access of an 8-Bit /O Device. 13-17
Figure 13-12 32-Bit Data Access of an 8-Bit /O Device., 13-18
Figure 13-13 32-Bit Data Access of a 16-Bit /O Device., 13-18
Figure 13-14 8-Bit Data Access of a 16-Bitl/O Device. 13-19
Figure 13-15 16-Bit Access of a 16-Bit /O Device e 13-20
Figure 13-16 GPRDY TiMiNG ottt e e e e e 13-21
Figure 14-1 GP-DMA Controller Block Diagramo 14-2
Figure 14-2 Master and Slave Core Cascading Diagramttt 14-3
Figure 14-3 GP-DMA Read Transfer. e 14-13
Figure 14-4 GP-DMA Write Transfer. e 14-14
Figure 14-5 GP-DMA Verify Transfer e 14-14
Figure 14-6 GP-DMA Read in Demand TransferMode, 14-16
Figure 14-7 GP-DMA Read Transfer with Cache Hit (Write-Back Cache) 14-17
Figure 15-1 Programmable Interrupt Controller (PIC) Block Diagram 15-3
Figure 15-2 INtErrUPt SOUMCES . . . o . .ttt e e e e e e e e e e e e e 15-9
Figure 15-3 Interrupt Source ROULING oottt e 15-11
Figure 15-4 NMIROULING.ot e 15-15
Figure 16-1 Programmable Interval Timer Block Diagramo, 16-2
Figure 17-1 General-Purpose Timers Block Diagram.ttt 17-2
Figure 18-1 Software Timer Block Diagram e 18-1

Elan™SC520 Microcontroller User's Manual XiX

AMDA

Table of Contents

Figure 19-1
Figure 20-1
Figure 20-2
Figure 20-3
Figure 20-4
Figure 21-1
Figure 21-2
Figure 21-3
Figure 22-1
Figure 22-2
Figure 22-3
Figure 22-4
Figure 22-5
Figure 22-6
Figure 22-7
Figure 22-8

Figure 22-9
Figure 23-1
Figure 24-1
Figure 24-2
Figure 24-3
Figure 24-4
Figure 25-1
Figure 25-2
Figure 25-3
Figure 25-4
Figure 25-5
Figure 25-6
Figure 26-1
Figure 26-2
Figure 26-3
Figure 26-4
Figure 26-5

Watchdog Timer Block Diagramttt e 19-2
Real-Time Clock Block Diagram e e 20-2
RTC Voltage Monitor Block Diagram e e e 20-3
Circuitwith Backup Battery e e e 20-4
Circuit without Backup Battery. e 20-5
UART BlOCK Diagram.ottt e e e e 21-2
UART Frame Configuration e e 21-5
UART Frame TransSmisSIONttt e e e e e 21-5
SSIBIOCK Diagram. e 22-2
SSIFour-Pin Interface e 22-4
SSI Simultaneous Transmit and Receive. i i 22-4
SSIThree-Pin Interface. i e e 22-4
SSI Typical Half-Duplex Communication, Non-Inverted Phase and Clock Modes. . . 22-4
SSI Clock Phase and Clock Idle State: EffectsonData 22-6
SSI 4-Bit Read Cycle: Full-Duplex, Non-Inverted Phase, Non-Inverted Clock 22-6
SSI Back-to-Back Transactions for Full-duplex,

Microwire-Compatible Configuration 22-7
SSITiming: TC_INTand BSY_STABItSo e 22-8
PIO Signal Block Diagram it 23-2
System Test Mode Timing During a SDRAM Write Cycle (Page Hit) 24-5
System Test Mode Timing During an SDRAM Read Cycle (Page Miss).......... 24-5
Write Buffer Test Mode Timing During an SDRAM Write Cycle (Page Hit)........ 24-8
Write Buffer Test Mode Timing During a SDRAM Read Cycle (Page Miss) 24-9
Logical Structure of Boundary Scan Register, 25-1
Serial Debug Port Data Register Format. 25-14
Device Identification Register Format 25-14
Test Access Port Controller State Diagramo e 25-15
Test Logic Operation: Data SCan. e 25-19
Test Logic Operation: Instruction Scan 25-20
AMDebug™ Technology Software Architecture. 26-2
12-Pin Connector Format i 26-4
20-Pin Serial Connector Format 26-4
Mechanical Specifications for AMDebug™ Technology Target Connector 26-5
Locating the Target Connector it e 26-6

XX

Elan™SC520 Microcontroller User’s Manual

Table of Contents AMD:'

LIST OF TABLES

Table 0-1
Table 2-1
Table 2-2
Table 3-1
Table 3-2
Table 3-3
Table 3-4
Table 3-5
Table 3-6
Table 3-7
Table 3-8
Table 3-9
Table 3-10
Table 3-11
Table 3-12
Table 4-1
Table 4-2
Table 4-3
Table 4-4
Table 4-5
Table 5-1
Table 5-2
Table 5-3
Table 5-4
Table 6-1
Table 6-2
Table 6-3
Table 6-4
Table 7-1
Table 7-2

Table 7-3
Table 8-1
Table 9-1
Table 9-2
Table 9-3
Table 10-1
Table 10-2
Table 10-3
Table 10-4
Table 10-5
Table 10-6
Table 10-7
Table 10-8
Table 10-9
Table 10-10
Table 10-11
Table 10-12
Table 11-1
Table 11-2
Table 12-1
Table 12-2
Table 12-3
Table 12-4
Table 12-5
Table 12-6

Documentation Notation XXV
Signal Descriptions Table Definitions 2-4
Signal DeSCriptioNS oot 2-5
CPUID CO0ES . . .t ittt et e e e e 3-7
Example PAR Programming: Single Device Using One Chip Select. 3-14
Example PAR Programming: Single Device That Performs Its Own Decode 3-14
Example PAR Programming: Multiple Devices on One Chip Select 3-14
Example PAR Programming: VGA Controlleronthe PCIBus. 3-15
Example PAR Programming: COM3 with VGA Present on the PCIBus.......... 3-16
Example PAR Programming: Network Adapter for Remote Program Loading 3-16
Example PAR Programming: Boot ROM Device Mapping for BIOS Shadowing 3-17
Example PAR Programming: First Bank of Flash for XIP Operating System. 3-17
Example PAR Programming: Second Bank of Flash for XIP Operating System3-18
Example PAR Programming: Setting Up DMA Buffers 3-18
Example PAR Programming: Write-Protected Code Segments 3-19
Address Decoding Registers—Memory-Mapped, 4-2
Address Decoding Registers—Direct-Mapped 4-2
Bus Master Address SPacesS oo it 4-3
Memory and 1/0O Space SUMMAIYttt 4-4
PC/AT Peripherals /O Map oo 4-14
Clock Start-up and Lock Times e 5-2
Clock Signals Shared with Other Interfaces 5-3
Timing Error as It Translates to Clock ACCUracy 5-5
Clock Control Registers—Memory-Mapped 5-6
Reset Generation Registers—Memory-Mapped o oL 6-3
Reset Generation Registers—Direct-Mapped. i 6-3
Elan™SC520 Microcontroller ReSet SOUICESo vt ee e 6-4
States of Cores after System Reset 6-5
Amb5,86® CPU Registers—Memory-Mapped 7-1
Amb5,86® CPU Registers—Direct-Mapped. i 7-1
Cache Configuration Optionsttt e 7-4
System Arbitration Registers—Memory-Mappedo .. 8-2
PCI Host Bridge Registers—Memory-Mapped, 9-7
PCI Host Bridge Registers—Direct-Mapped 9-8
PCI Host Bridge Registers—PClIndexed 9-8
SDRAM Clock Loading Estimates Based on Device Width. 10-6
Estimated Capacitance (4-Bit SDRAMDEVICES) vt 10-8
Estimated Capacitance (8-Bit SDRAMDEVICES) v it i i e 10-8
Estimated Capacitance (16-Bit SDRAMDeVICES)t ii i 10-9
Estimated Capacitance (32-Bit SDRAMDeVICES)ttt 10-9
SDRAM Controller Registers—Memory-Mapped 10-10
Address Mapping to MAXx Signals for SDRAM Devices.c... .. 10-12
SDRAM Devices Supported with Column Boundary Specification 10-13
Column Address Configuration Settings for SDRAM. 10-15
SDRAM Page SizZeS. . ..ottt e 10-16
SDRAM Refresh Ratesot 10-18
Load Mode Register Settingst e 10-31
SDRAM Signals Shared with Other Interfaces 11-4
SDRAM Buffer Control Registers—Memory-Mapped 114
ROM/Flash Data Bus Connection Options 12-1
ROM Signals Shared with Other Interfaces. 12-3
ROM Controller Registers—Memory-Mapped., 12-5
Example: ROM Access Timingand WaitStates 12-9
Accesses and ROM Width. 12-9
CFGx Pinstrap Configuration Options for BOOTCSccvo.... 12-14

Elan™SC520 Microcontroller User’s Manual XXi

AMDA

Table of Contents

Table 13-1
Table 13-2
Table 13-3
Table 13-4
Table 13-5
Table 13-6
Table 13-7
Table 13-8
Table 14-1
Table 14-2
Table 14-3
Table 14-4
Table 14-5
Table 14-6
Table 14-7
Table 14-8
Table 15-1
Table 15-2
Table 15-3
Table 15-4
Table 16-1
Table 16-2
Table 16-3
Table 16-4
Table 16-5
Table 17-1
Table 17-2
Table 17-3
Table 17-4
Table 18-1
Table 19-1
Table 19-2
Table 20-1
Table 20-2
Table 20-3
Table 20-4
Table 21-1
Table 21-2
Table 21-3
Table 21-4
Table 21-5
Table 21-6
Table 21-7
Table 22-1
Table 23-1
Table 23-2
Table 23-3
Table 24-1
Table 24-2
Table 24-3
Table 24-4
Table 25-1
Table 25-2
Table 25-3
Table 26-1

GP Bus Signals Shared with Other Interfaces. 13-3
GP Bus Registers—Memory-Mapped. 13-5
GP Bus Echo Mode Minimum Timing oottt e 13-9
Cross-Reference Table of ISA Signalsand GP Bus Signals. 13-12
Example Super I/O Controller Interface Timing. 13-13
Example AMD Enhanced Serial Communications Controller Interface Timing. . ..13-15
Differentiating Upper/Lower Byte Access of 16-Bit Devices 13-19
Dynamic Bus Sizing Override of Programmed DataWidth 13-20
GP-DMA Signals Shared with Other Interfaces. 14-4
GP-DMA Controller Registers—Memory-Mapped. 14-4
GP-DMA Controller Registers—Direct-Mapped, 14-7
Supported GP-DMA Initiator/Target Combinations 14-9
GP-DMA Channel Mapping. co i e e e 14-10
8-Bit GP-DMA Channel Address Generationccoivinn .. 14-12
16-Bit GP-DMA Channel Address Generationc.ouiuuon.. 14-12
GP-DMA CyCle TYPES . . ittt e e e e e e 14-16
Programmable Interrupt Controller Signals Shared with Other Interfaces. 15-2
Programmable Interrupt Controller Registers—Memory-Mapped. 15-4
Programmable Interrupt Controller Registers—Direct-Mapped. 15-6
PCI/AT Interrupt Channel Mapping.ot 15-12
Programmable Interval Timer Signals Shared with Other Interfaces. 16-1
Programmable Interval Timer Configuration Registers—Memory-Mapped. 16-2
Programmable Interval Timer Configuration Registers—Direct-Mapped 16-3
PIT Internal Clock Source e e 16-6
PIT External CIoCK SOUICE e 16-6
General-Purpose Timer Signals Shared with Other Interfaces 17-1
General-Purpose Timer Registers—Memory-Mapped 17-2
GP Timers Internal CIOCK SOUICESot tiieeeeee 17-5
GP Timers External Clock Sources (Using @ 33.333 MHz Crystal). 17-6
Software Timer Configuration Registers—Memory-Mapped. 18-2
Watchdog Timer Registers—Memory-Mapped i, 19-2
Watchdog Timer Time-Out Durationt 19-4
Real-Time Clock Registers—Memory-Mapped. 20-6
Real-Time Clock Registers—Direct-Mapped.t .. 20-6
Real-Time Clock Registers—RTC Indexed i 20-6
Using RATE_SEL to Specify a Periodic InterruptRate 20-8
UART Signals Shared with Other Interfaces 21-2
Connection of DTEtODTE e 21-3
UART Registers—Memory-Mapped 21-3
UART Registers—Direct-Mapped 21-4
Baud Rates, Divisors, and Clock Source. 21-9
UART Interrupt Programming SUMMaryttt 21-11
Serial Port Interrupt and Interrupt Priority 21-12
Synchronous Serial Interface Registers—Memory-Mapped 22-2
P10 Signals Shared with Other Interfaces 23-3
PIO Registers—Memory-Mappedot 23-4
PIO Configuration SUMMArYo e 23-5
System Test and Debugging Signals Shared with Other Interfaces 24-2
System Test and Debugging Registers—Memory-Mapped. 24-2
WBMSTR2-WBMSTRO Pin Definition During Write Buffer Write Cycles 24-8
WBMSTR2-WBMSTRO Pin Definition During SDRAM Read Cycles 24-9
Chip Test and Debugging Registers i 25-2
Test Access Port Instruction Set 25-3
Main Data Scan Path. 25-5
AMDebug™ Technology Connector Pins 26-3

XXii

Elan™SC520 Microcontroller User’s Manual

AMD X\

INTRODUCTION

Elan™SC520 MICROCONTROLLER

The Elan™SC520 microcontroller is a full-featured microcontroller developed for the
general embedded market. The ElanSC520 microcontroller combines a 32-bit, low-voltage
Amb5,86® CPU with a complete set of integrated peripherals suitable for both real-time and
PC/AT-compatible embedded applications.

PURPOSE OF THIS MANUAL

This manual describes the technical features and programming interface of the ElanSC520
microcontroller.

Intended Audience

The Elan™SC520 Microcontroller User’s Manual, order #22004, is intended for computer
software and hardware engineers and system architects who are designing or are
considering designing systems based on the ElanSC520 microcontroller.

Overview of this Manual
The manual is organized into the following chapters:

m Chapter 1 includes an architectural overview of the ElanSC520 microcontroller, along
with applications diagrams.

m Chapter 2 describes the signals and pins of the ElanSC520 microcontroller. Logic
diagrams showing defaults and pins with shared signals are also found in this chapter.
Detailed pin state information is available in the Elan™SC520 Microcontroller Data
Sheet.

m Chapter 3 provides an overview of system initialization and shows example
configurations.

m Chapter 4 describes the system address mapping on the ElanSC520 microcontroller.
m Chapter 5 provides information on clock generation and control.
m Chapter 6 describes the reset sources and states of the ElanSC520 microcontroller.

m Chapter 7 includes an overview of the integrated Am5,86 CPU. For additional
information about the CPU, consult the references provided in this chapter.

m Chapter 8 describes the system arbiter on the ElanSC520 microcontroller, which
includes a CPU bus arbiter and a PCI bus arbiter.

m Chapter 9 describes the PCI bus host bridge implemented on the ElanSC520
microcontroller.

m Chapter 10 describes the synchronous DRAM (SDRAM) controller.

m Chapter 11 describes the SDRAM write buffer and read buffer with read-ahead
feature.

m Chapter 12 describes the ROM/Flash controller.

Elan™SC520 Microcontroller User’s Manual Xxiii

AMDZ\

Introduction

Chapter 13 describes the programmable general-purpose (GP) bus interface included
on the ElanSC520 microcontroller.

Chapter 14 describes the GP bus DMA controller.

Chapter 15 describes the programmable interrupt controller (PIC), which includes
three interrupt controllers.

Chapter 16 describes the programmable interval timer (PIT), which includes three
timers.

Chapter 17 describes the three general-purpose (GP) timers included on the
ElanSC520 microcontroller.

Chapter 18 describes the software timer that eases the task of keeping system time.
Chapter 19 describes the watchdog timer used to guard against runaway software.

Chapter 20 describes the real-time clock (RTC) and RTC voltage monitor included
on the ElanSC520 microcontroller.

Chapter 21 describes the two UART serial ports.
Chapter 22 describes the synchronous serial interface (SSI).

Chapter 23 describes the 32 programmable input/output (PIO) pins on the
ElanSC520 microcontroller.

Chapter 24 is a summary of the system test features found on the ElanSC520
microcontroller.

Chapter 25 describes the Joint Test Action Group (JTAG) (IEEE Std. 1149.1-1990)
boundary scan test interface features of the ElanSC520 microcontroller.

Chapter 26 provides an overview of AMDebug™ technology and the board
specifications necessary to utilize this capability, which is supported by third-party
FusionE86 vendors.

RELATED DOCUMENTS

The following documents contain additional information that will be useful in designing an
embedded application based on the ElanSC520 microcontroller.

AMD Documentation

In addition to this manual, the documentation set for the ElanSC520 microcontrollerincludes
the following documents:

Elan™SC520 Microcontroller Register Set Manual, order #22005, fully describes all the
configuration registers required to program the microcontroller.

Elan™SC520 Microcontroller Data Sheet, order #22003, includes complete pin lists, pin
state tables, timing and thermal characteristics, and package dimensions for the
ElanSC520 microcontroller.

Other information of interest:

The Am486® Microprocessor Software User’'s Manual, order #18497, includes the
complete instruction set for the integrated Am5,86 CPU.

Amb5,86® Microprocessor Family Data Sheet, order #19751
Am486® DX/DX2 Microprocessor Hardware Reference Manual, order #17965

XXiV

Elan™SC520 Microcontroller User’s Manual

Introduction AMD:'

E86 Family Products and Development Tools CD, order #21058, provides a single-
source multimedia tool for customer evaluation of AMD products, as well as FusionE86
partner tools and technologies that support the E86 family. Technical documentation is
included on the CD in PDF format.

To order literature, contact the nearest AMD sales office or call the literature center at one
of the numbers listed on the back cover of this manual. In addition, these documents are
available in PDF form on the AMD web site. To access the web site, go to www.amd.com
and follow the Embedded Processor link for information about the E86 family.

Additional Information

The following non-AMD documents and sources provide additional information that may
be of interest to ElanSC520 microcontroller users:

PCI Local Bus Specification, Revision 2.2, December 18, 1998, PCI Special Interest
Group, 800-433-5177 (US), 503-693-6360 (International), www.pcisig.com.

IEEE Std 1149.1-1990 Standard Test Access Port and Boundary-Scan Architecture,
(order #SH16626-NYF), Institute of Electrical and Electronic Engineers, Inc., 800-678-
4333, www.ieee.org.

PCI System Architecture, Mindshare, Inc., Reading, MA: Addison-Wesley, 1995, ISBN
0-201-40993-3.

ISA System Architecture, Mindshare, Inc., Reading, MA: Addison-Wesley, 1995, ISBN
0-201-40996-8.

80486 System Architecture, Mindshare, Inc., Reading, MA: Addison-Wesley, 1995, ISBN
0-201-40994-1.

The Indispensable PC Hardware Book, Hans-Peter Messmer, Wokingham, England:
Addison-Wesley, 1995, ISBN 0-201-87697-3.

DOCUMENTATION CONVENTIONS
Table 0-1 lists the documentation conventions used throughout this manual.

Table 0-1

Documentation Notation

Notation Meaning

Reset Default Values

Default Value after a system reset
0 Low

1 Active or High

X No value is guaranteed

Determined by sources external to the ElanSC520
microcontroller

Read/Write Attributes

The bit field is read-only. A write to the register at this bit field
R has no effect. The contents may or may not be changed by
hardware.

Elan™SC520 Microcontroller User’s Manual XXV

AMDZ\

Introduction

Table 0-1 Documentation Notation (Continued)

Notation Meaning
The bit field is write-only. Reading this register at this bit field

w g .
does not return a meaningful value and has no side effects.

RIW The bit field is read/write. Reading the register at this bit field
always returns the last value written. Reads have no side effects.
The bit field is read/write with conditions. The “!” indicates that
there are side effects to using this bit. For example, reading a

R/W! bit or register might not always return the last value written. Note
that both reads and writes can have side effects. If you see a “!",
be sure to read the bit description and programming notes.
The bit field is reserved for internal test/debug or future

RSV expansion. This bit field should be written to 0 for normal system
operation. This bit field always returns 0 when read.
The bit field is reserved for compatibility purposes. For example,

RSV the bit field might be ignored during writes to maintain software

' compatibility. If you see a “!”, be sure to read the bit description

and programming notes.

Reference Notation
ElanSC520 microcontroller Memory-Mapped Configuration

MMCR offset 00h Region (MMCR) offset register 00h

PCI index 00h PCI indexed register 00h

Port 00h Direct-mapped I/O register 00h

RTC index 00h RTC and configuration RAM indexed register 00h

Pin Naming

{1} Pin function during hardware reset

[1 Alternative pin function selected by software configuration

ROMCS1 An overbar indicates that the signal assumes the logic Low state
when asserted.

GPRESET The ab_sen_ce of an overbar indicates that the signal assumes
the logic High state when asserted.

ads, hold A signal name in all lowercase indicates an internal signal.

ROMCS2-ROMCS1 Two ROM chip select signals

ROMCSx Any of the two ROM chip select signals

Numbers

b Binary number

d Decimal number
Decimal is the default radix

XXVi Elan™SC520 Microcontroller User's Manuall

Introduction AMD:'

Table 0-1

Documentation Notation (Continued)

Notation

Meaning

h

Hexadecimal number

X in register address

Any of several legal values; e.g., using OxF8h for the UART
Transmit Holding register is either 02F8h or 03F8h, depending
on the UART

The bit field that consists of bits X through Y.

[*=Y1] Example: The SB_ADDR[23—16] bit field.
Refers to the system clock frequency being used. This can be

33 MHz either 33.000 MHz or 33.333 MHz. See the Elan™SC520
Microcontroller User’s Manual for more information about clock
generation.

General

field Bit field in a register (one or more consecutive and related bits)

can It is possible to perform an action if properly configured

will A certain action is going to occur

Set the ENB bit.

Write the ENB bit to 1.
Note: The bitreferred to is either in the register being described,
or the register is referred to explicitly in the surrounding text.

Clear the ENB bit.

Change the ENB bit to 0. Usually a bit is cleared by writing a 0
to it; however, some bits are cleared by writing a 1.

Reset the ENB bit.

Context-sensitive. Can refer either to resetting the bit to its
default value or to clearing the bit.

Elan™SC520 Microcontroller User’s Manual XXVil

AMDﬂ Introduction

XXVili Elan™SC520 Microcontroller User’s Manual

AMD X\

1 ARCHITECTURAL OVERVIEW

1.1

1.1.1

Elan™SC520 MICROCONTROLLER

The Elan™SC520 microcontroller is a full-featured microcontroller developed for the
general embedded market. The ElanSC520 microcontroller combines a 32-bit, low-voltage
Amb5,86 CPU with a complete set of integrated peripherals suitable for both real-time and
PC/AT-compatible embedded applications.

Anintegrated PCI host bridge, SDRAM controller, enhanced PC/AT-compatible peripherals,
and advanced debugging features provide the system designer with a wide range of on-
chip resources, allowing support for legacy devices as well as new devices available in the
current PC marketplace.

Designed for medium- to high-performance applications in the telecommunications, data
communications, and information appliance markets, the ElanSC520 microcontroller is
particularly well suited for applications requiring high throughput combined with low latency.

Distinctive Characteristics

m Industry-standard Am5,86® CPU with floating point unit (FPU) and 16-Kbyte write-back
cache

— 100-MHz and 133-MHz operating frequencies
— Low-voltage operation (core Vo = 2.5 V)
— 5-V tolerant I/O (3.3-V output levels)

m E86™ family of x86 embedded processors

— Part of a software-compatible family of microprocessors and microcontrollers well
supported by a wide variety of development tools

m Integrated PCI host bridge controller leverages standard peripherals and software
— 33 MHz, 32-bit PCI bus Revision 2.2-compliant
— High-throughput 132-Mbyte/s peak transfer
— Supports up to five external PCI masters
— Integrated write-posting and read-buffering for high-throughput applications
m Synchronous DRAM (SDRAM) controller
— Supports 16-, 64-, 128-, and 256-Mbit SDRAM.
— Supports 4 banks for a total of 256 Mbytes.
— Error Correction Code provides system reliability.
— Buffers improve read and write performance.

m AMDebug™ technology offers a low-cost solution for the advanced debugging
capabilities required by embedded designers.

— Allows instruction tracing during execution from the Am5,86 CPU's internal cache

— Uses an enhanced JTAG port for low-cost debugging

Elan™SC520 Microcontroller User’s Manual 1-1

AMDZ\

Architectural Overview

1.2

— Parallel debug port for high-speed data exchange during in-circuit emulation

General-purpose (GP) bus with programmable timing for 8- and 16-bit devices provides
good performance at very low cost.

ROM/Flash controller for 8-, 16-, and 32-bit devices
Enhanced PC/AT-compatible peripherals provide improved performance.

— Enhanced programmable interrupt controller (PIC) prioritizes 22 interrupt levels (up
to 15 external sources) with flexible routing.

— Enhanced DMA controller includes double buffer chaining, extended address and
transfer counts, and flexible channel routing.

— Two 16550-compatible UARTSs operate at baud rates up to 1.15 Mbit/s with optional
DMA interface.

Standard PC/AT-compatible peripherals

— Programmable interval timer (PIT)

— Real-time clock (RTC) with battery backup capability and 114 bytes of RAM
Additional integrated peripherals

— Three general-purpose 16-bit timers provide flexible cascading for 32-bit operation.
— Watchdog timer guards against runaway software.

— Software timer

— Synchronous serial interface (SSI) offers full-duplex or half-duplex operation.

— Flexible address decoding for programmable memory and I/O mapping and system
addressing configuration

32 programmable input/output (PIO) pins
Native support for pSOS, QNX, RTXC, VxWorks, and Windows® CE operating systems
Industry-standard BIOS support

BLOCK DIAGRAM

Figure 1-1 on page 1-3 illustrates the integrated Am5,86 CPU, bus structure, and on-chip
peripherals of the ElanSC520 microcontroller. Three primary interfaces are provided:

A high-performance, 66-MHz 32-bit synchronous DRAM (SDRAM) interface of up to 256
Mbytes is used for Am5,86 CPU code execution, as well as buffer storage of external
PCI bus masters and GP bus DMA initiators. A high-performance ROM/Flash interface
can also be connected to the SDRAM interface.

Anindustry-standard, 32-bit PCI bus is provided for high bandwidth I/O peripherals such
as local area network controllers, synchronous communications controllers, and disk
storage controllers.

A simple 8/16-bit, 33-MHz general-purpose bus (GP bus) provides a glueless connection
to lower bandwidth peripherals, and NVRAM, SRAM, ROM, or custom ASICs; supports
dynamic bus sizing and compatibility with many common ISA devices.

These three buses listed above are provided in all operating modes of the ElanSC520
microcontroller.

1-2

Elan™SC520 Microcontroller User’s Manual

Architectural Overview

AMDA

In addition to these three primary interfaces, the ElanSC520 microcontroller also contains
internal oscillator circuitry and phase locked loop (PLL) circuitry, requiring only two simple
crystals for virtually all system clock generation.

Diagrams showing how the ElanSC520 microcontroller can be used in various system
designs are included in “Applications” on page 1-8.

Figure 1-1

Elan™SC520 Microcontroller Block Diagram

CPU Address Bus SDRAM
4 > Controller
® Address
Am>,86~ CPU € Q Decode || Read/Write Buffers
- CPU Data Bus g Unit
Q [}
] 2 ROM/Flash
= a
AMDebug™ g >
Techn0|ogy and) CPU Control/Status Bus E‘)
GP-DMA GP Bus
JTAG < > Controller Controller
GP-DMA @
= Request and IS Clock External GP Bus
58 Grant 9 o Generation
Q& IS © °
©9 k=] = = > Programmable
c
& 2 a 8 Interrupt Controller
v \ 4 v Programmable
’ Interval Timer
CPU Bus Interface
CPU Bus "
‘Arbiter ——Jp Watchdog Timer
FIFOs and FIFO
Control
_} Real-Time Clock
CMOS RAM
PCI Bus
Arbiter > General-Purpose
Timers
A Software
— Timer
_> 16550 UART
e 16550 UART
PCl Bus . Synchronous Serial
PCI Requests and Grants Interface
> Programmable 1/0
Controls
3) e PC/AT Compatibility
Elan™SC520 Microcontroller Logic
v

Elan™SC520 Microcontroller User’s Manual 1-3

AMDZ\

Architectural Overview

1.3

1.3.1

1.3.2

ARCHITECTURAL OVERVIEW
The ElanSC520 microcontroller was designed to provide:

m A balanced mix of high performance and low-cost interface mechanisms

m A high-performance, industry-standard 32-bit PCI bus

m Glueless interfacing to many 8- and 16-bit I/O peripherals and an 8- and 16-bit bus with
programmable timing

m A cost-effective system architecture that meets a wide range of performance criteria
while retaining the lower cost of a 32-bit system

m A high degree of leverage from present day hardware and software technologies

Industry-Standard x86 Architecture (Chapter 7)

The Am5,86 CPU in the ElanSC520 microcontroller utilizes the industry-standard x86
microprocessor instruction set that enables compatibility across a variety of performance
levels from the 16-bit Am186™ processors to the high-end AMD Athlon™ processor. Software
written for the x86 architecture family is compatible with the ElanSC520 microcontroller.

Other benefits of the Am5,86 CPU include:

m Improved time-to-market and easy software migration

m Existing availability of multiple operating systems that directly support the x86
architecture. Whether the application requires a real-time operating system (RTOS) or
one of the popular Microsoft® operating systems, the ElanSC520 microcontroller
provides consistent compatibility with many off-the-shelf operating systems.

m Multiple sources of field-proven development tools
m Integrated floating point unit (FPU) (compliant with ANSI/IEEE 754 standard)

m 16-KByte unified cache configurable for either write-back or write-through cache mode
The Am5,86 CPU is described in Chapter 7.

AMDebug™ Technology for Advanced Debugging (Chapter 26)

The ElanSC520 microcontroller provides support for low-cost, full-featured, in-circuit
emulation capability. This in-circuit emulation support was developed at AMD specifically
to enable users to test and debug their software earlier in the design cycle. Utilizing this
capability, the software can be more extensively exercised, and at full execution speeds. It
also allows tracing during execution from the Am5,86 CPU's internal cache.

AMDebug support provides the product design team with two different communication paths
on the ElanSC520 microcontroller, each of which is supported by powerful debug tools from
third-party vendors in AMD’s FusionE86 program.

m Serial AMDebug technology uses a serial connection based on an enhanced JTAG
protocol and an inexpensive 12-pin connector that can be placed on each board design.
This low-cost solution satisfies the requirement of alarge number of software developers.

m Parallel AMDebug technology uses a parallel debug port to exchange commands and
data between the ElanSC520 microcontroller and the host. The higher pin count requires
that the extra signal pins be provided on a special bond-out package of the ElanSC520
microcontroller, which is only made available to tool developers, such as in-circuit
emulator manufacturers. The parallel AMDebug port greatly simplifies the task of
supporting high speed data exchange.

1-4

Elan™SC520 Microcontroller User’s Manual

Architectural Overview AMD:'

1.3.3

1.3.4

1.3.5

1.3.6

Industry-Standard PCI Bus Interface (Chapter 9)

The ElanSC520 microcontroller provides a 33-MHz, 32-bit PCI bus Revision 2.2-compliant
host bridge interface, including integrated write-posting and read-buffering capabilities
suitable for high-throughput applications. The PCI host bridge leverages standard
peripherals and software. It also provides:

m High throughput (132 Mbytes/s peak transfer rate)
m Deep buffering and support for burst transactions from PCI bus masters to SDRAM
m Flexible arbitration mechanism

m Support for up to five external PCI masters

High-Performance SDRAM Controller (Chapter 10)

The ElanSC520 microcontroller provides an integrated SDRAM controller that supports
popular industry-standard synchronous DRAMs (SDRAM).

m The SDRAM controller interfaces with SDRAM chips as well as with most standard
DIMMs to enable use of standard off-the-shelf memory components.

m The SDRAM controller supports programmable timing options and provides the required
external clock.

m Uptofour32-bitbanks of SDRAM are supported with a maximum capacity of 256 Mbytes.

m An important reliability-enhancing Error Correction Code (ECC) feature is built into the
SDRAM controller. The resultant increase in the memory content reliability enables the
ElanSC520 microcontroller to be effectively utilized in applications that require more
reliable operation, such as communications environments.

m The SDRAM controller contains a write buffer and read ahead buffer subsystem that
improves both write and read performance.

m SDRAM refresh options allow the SDRAM contents to be maintained during reset.

ROM/Flash Controller (Chapter 12)

The ElanSC520 microcontroller provides an integrated ROM controller for glueless
interfacing to ROM and Flash devices. The ElanSC520 microcontroller supports two types
of interfaces to such devices—a simple interface via the GP bus for 8- and 16-bit devices,
and an interface to the SDRAM memory data bus for higher performance 8-, 16-, and 32-
bit devices.

The ROM/Flash controller:

m Reduces system cost by gluelessly interfacing static memory with up to three ROM/
Flash chip selects

m Supports execute-in-place (XIP) operating systems for applications that require
executing out of ROM or Flash memory instead of DRAM

m Supports high-performance page-mode devices

Flexible Address-Mapping (Chapter 4)

In addition to the memory management unit (MMU) within the Am5,86 CPU core, the
ElanSC520 microcontroller provides 16 Programmable Address Region (PAR) registers
that enable flexible placement of memory (SDRAM, ROM, Flash, SRAM, etc.) and
peripherals into the two address spaces of the Am5,86 CPU (memory address space and
I/0 address space). The PAR hardware allows designers to flexibly configure both address

Elan™SC520 Microcontroller User’s Manual 1-5

AMDZ\

Architectural Overview

1.3.7

1.3.8

spaces and place memory and/or external peripherals, as required by the application. The
internal memory-mapped configuration registers space can also be remapped to
accommodate system requirements. PAR registers also allow control of important
attributes, such as cacheability, write protection, and code execution protection for memory
resources.

General-Purpose (GP) Bus Interface (Chapter 13)

The ElanSC520 microcontroller includes a simple general-purpose (GP) bus that provides
programmable bus timing and allows the connection of 8/16-bit peripheral devices and
memory to the ElanSC520 microcontroller. The GP bus operates at 33 MHz, which offers
good performance at a very low interface cost.

The ElanSC520 microcontroller provides up to eight chip selects for external GP bus devices
such as off-the-shelf I/O peripherals, custom ASICs, and SRAM or NVRAM. The GP bus
interface supports programmable timing and dynamic bus width and cycle stretching to
accommodate a wide variety of standard peripherals, such as UARTSs, 10-Mbit LAN
controller chips and serial communications controllers. Up to four external DMA channels
provide fly-by DMA transfers between peripheral devices on the GP bus and system
SDRAM.

Internally, the GP bus is used to provide a full complement of integrated peripherals, such
as a DMA controller, programmable interrupt controller, timers, and UARTS, as described
in “Integrated Peripherals” on page 1-7. These internal peripherals are designed to operate
at the full clock rate of the GP bus. The internal peripherals can also be configured to
operate in PC/AT-compatible configuration, but are generally not restricted to this
configuration.

The ElanSC520 microcontroller provides a way to view accesses to the internal peripherals
on the external GP bus for debugging purposes.

Clock Generation (Chapter 5)

The ElanSC520 microcontroller offers user-configurable CPU core clock speed operation
at 100 or 133 MHz for different power/performance points depending on the application.

Not all ElanSC520 microcontroller devices support all CPU clock rates. The maximum
supported clock rate for a device is indicated by the part number printed on the package.
The clocking circuitry can be programmed to run the device at higher than the rated speeds.
However, if an ElanSC520 microcontroller is programmed to run at a higher clock speed
than that for which it is rated, then erroneous operation can result, and physical damage
to the device may occur.

The ElanSC520 microcontroller includes on-chip oscillators and PLLs, as well as most of
the required PLL loop filter components. The ElanSC520 microcontroller requires two
standard crystals, one for 32.768 kHz and one for 33 MHz. All the clocks required inside
the ElanSC520 microcontroller are generated from these crystals. The ElanSC520
microcontroller also supplies the clocks for the SDRAM and PCI bus; however, external
clock buffering may be required in some systems.

Note: The ElanSC520 microcontroller supports either a 33.000-MHz or 33.333-MHz
crystal. In this document, the generic term “33 MHZz" refers to the system clock derived from
whichever 33-MHz crystal frequency is being used in the system.

1-6

Elan™SC520 Microcontroller User’s Manual

Architectural Overview AMD:'

1.3.9

1.3.10

Integrated Peripherals

The ElanSC520 microcontroller is a highly integrated single-chip CPU with a complete set
of integrated peripherals that are a superset of common PC/AT peripherals, plus a set of
memory-mapped peripherals that enhance its usability in various applications.

m A programmable interrupt controller (PIC) (see Chapter 15) that provides the capability
to prioritize 22 interrupt levels, up to 15 of these being external sources. The PIC can
be programmed to operate in PC/AT-compatible mode, but also contains extended
features, including support for more sources and flexible routing that allows any interrupt
request to be steered to any PIC input. Interrupt requests can be programmed to
generate either non-maskable interrupt (NMI) or maskable interrupt requests.

m Anintegrated DMA controller (see Chapter 14) is included for transferring data between
SDRAM and GP bus peripherals. The GP-DMA controller operates in single-cycle (fly-
by) mode for more efficient transfers. The GP-DMA controller can be programmed for
PC/AT compatibility, but also contains enhanced features:

— A double buffer-chaining mode provides a more efficient software interface.
— Extended address and transfer counts
— Flexible routing of DMA channels

m Three general-purpose 16-bit timers (see Chapter 17) that provide flexible cascading
for extension to 32-bit operation. These timers provide the ability to configure down to
the resolution of four clock periods where the clock period is the 33-MHz clock. Timer
input and output pins provide the ability to interface with off-chip hardware.

m A standard PC/AT-compatible programmable interval timer (PIT) (see Chapter 16) that
consists of three 16-bit timers.

m Asoftware timer (see Chapter 18) that eases the task of keeping system time. It provides
1-us resolution and can also be used for performance monitoring.

m A watchdog timer (see Chapter 19) to guard against runaway software.

m A real-time clock (RTC) with battery backup capability (see Chapter 20). The RTC also
provides 114 bytes of battery-backed RAM for storage of configuration parameters.

m Twointegrated 16550-compatible UARTS (see Chapter 21) that provide full handshaking
capability with eight pins each. Enhancements enable the UARTS to operate at baud
rates up to 1.152 Mbits/s. The UARTSs can be configured to use the integrated GP bus
DMA controller to transfer data between the serial ports and SDRAM.

m A synchronous serial interface (SSI) that is compatible with SCP, SPI, and Microwire
slave devices (see Chapter 22). The SSlinterface can be configured for either full-duplex
or half-duplex operation using a 4-wire or 3-wire interface.

m 32 programmable 1/O pins are provided (see Chapter 23). These pins are multiplexed
with other peripherals and interface functions.

m The ElanSC520 microcontroller also provides PC/AT-compatible functions for control of
the a20 gate and the soft CPU reset (Ports 0060h, 0064h, 0092h).

JTAG Boundary Scan Test Interface (Chapter 25)

The ElanSC520 microcontroller provides a full JTAG test port that is compliant with IEEE
Std 1149.1-1990 for use during board testing.

Elan™SC520 Microcontroller User’s Manual 1-7

AMDZ\

Architectural Overview

1.3.11

1.4

1.4.1

1 l4l2

System Testing and Debugging Features (Chapter 24)

To facilitate debugging, the ElanSC520 microcontroller provides observability of many
portions of its internal operation, including:

m A three-pin interface that can be used in either system test mode or write buffer test
mode, to aid in determining internal bus initiators of SDRAM cycles, and determining
when SDRAM data is valid on the interface. An additional mode provides observability
of integrated peripheral accesses.

m A nonconcurrent arbitration mode to reduce debug complexity when PCI bus masters
and GP bus DMA initiators are also accessing SDRAM.

m CPU cache control and dynamic core clock speed control under program control.

m Ability to disable write posting and read prefetching in the SDRAM controller to simplify
tracing of SDRAM cycles.

m Notification of memory write protection and non-executable memory region violations.

APPLICATIONS

The figures on the following pages show the ElanSC520 microcontroller as it might be used
in several reference design applications in the data communications, information
appliances, and telecommunication markets.

Smart Residential Gateway

Figure 1-2 on page 1-10 shows an ElanSC520 microcontroller-based Smart Resident
Gateway (SRG), which is a router for a home network between the wide area network
(WAN) (the internet) and a local area network (LAN) (an intranet of computers and
information appliances in the home). The SRG provides firewall protection of the LAN from
unauthorized access through the internet. A common internet access medium is shared
by all users on the LAN.

A variety of connections are possible for both the WAN and the LAN. For example, the WAN
connection can be a V.90 modem, cable modem, ISDN, ADSL, or Ethernet.

The LAN connection can be:

m HomePNA—Home Phoneline Networking Alliance, an alliance with a widely endorsed
home networking specification

m Bluetooth—a computing and telecommunications industry specification that describes
how computing devices can easily interconnect with each other and with home and
business phones and computers using a short-range wireless connection)

m Home RF—a standard competing with Bluetooth for the interconnection of computing
devices in a LAN using radio frequency

m Ethernet—Ilocal area network technology

m Power line—a LAN using the AC power distribution network in a home or business to
interconnect devices. Digital information is transmitted on a high-frequency carrier signal
on top of the AC power.

Thin Client

Figure 1-3 on page 1-11 shows an ElanSC520 microcontroller-based “thin client,” which is
the modern replacement for the traditional terminal in a remote computing paradigm.
Application programs run remotely on a server, and data is warehoused on centrally
managed disks at the “server farm.” An efficient communications protocol transmits

1-8

Elan™SC520 Microcontroller User’s Manual

Architectural Overview AMD:'

1 l4l3

1.4.4

keyboard and mouse commands upstream and transmits video BIOS calls downstream.
The thin client renders and displays the graphics for the user.

The thin client is typically connected to an Ethernet LAN, although a remote location can
connect to a server via a WAN connection such as a modem. A minimum speed of 24 kbaud
is required for the communication protocol, unless the application is graphics-intensive, in
which case a faster connection is required.

Digital Set Top Box

Figure 1-4 on page 1-12 shows an ElanSC520 microcontroller-based digital set top box
(DSTB), whichis a consumer client device that uses a television set as the display. Common
applications for the DSTB are internet access, e-mail, and streaming audio and video
content.

The minimal system includes a connection to the WAN via a modem, ADSL, or cable
modem; an outputto a TV; and an InfraRed (IR) link to a remote control or wireless keyboard.
Expanded systems include DVD drives and MPEG2 decoders to deliver digital video
content. A hard drive may be employed to store video data for future replay. Keyboard,
mouse, printer, or a video camera are options that can be included.

Telephone Line Concentrator

Figure 1-5 on page 1-13 shows an ElanSC520 microcontroller-based telephone line
concentrator located in the neighborhood that converts multiple analog subscriber loops
into a high-speed digitally multiplexed line for connection to the central office switching
network.

Elan™SC520 Microcontroller User’s Manual 1-9

AMDZ\

Architectural Overview

Figure 1-2

Elan™SC520 Microcontroller-Based Smart Residential Gateway
Reference Design

—
S
i
12] Q
o) 8 I
E@ L
=z g 2
@ < < 5
Casr— 3 &
o
—
i I £
L] o [0))
14 g S
o 9 k) (o)}
- 83
n
< <
e[®2 g -
< S
— C
@]
RO
<
PCI Bus
MA12-MAO GPA25-GPAO
(2]
2 S g
o MD31-MDO < Elan™SC520 Microcontroller @ GPD15-GPDO
o
) Dof 0
Control @ Control
el I
1 1
5 5
~ -0 RE0
I I
= =
! AN
3 ™

Flash or ROM

1-10

Elan™SC520 Microcontroller User’s Manual

Architectural Overview AMDl‘yl

Figure 1-3 Elan™SC520 Microcontroller-Based Thin Client Reference Design

o) O 3
9 3% T
= < ¢ 8)
[ad O o el g
o > O 2 2 _
¥ = O _
N o © 8
A BH & o
O a a on
Lo
~
o _
28 = T T Q Q
S ~ '@
= e
< j5i £
LA €83 2 ©)
[a N - =
Z 8 o 5
5 & O o Q
~ o A = >
E <8 w
< I E
bt
RIO
2
Control
PCI Bus
MA12-MAO GPD15-GPDO
1))
<§(= %) =B
_) 5 "~
x MD31-MDO 5 Elan™SC520 Microcontroller @ GPA2F-GPAD g 2
o T o
n (o4 T
X o =
)
Control Control
T T
® ®
5 5
~ U 250
T I
= =
@ &

Elan™SC520 Microcontroller User’s Manual 1-11

AMDﬂ Architectural Overview

Figure 1-4 Elan™SC520 Microcontroller-Based Digital Set Top Box Reference Design

-
<
\ o a °
— o
7 > 9 g 3
= Z 8 _
¥ = ©
N o8
D B
22 & «x
s T T Q
(b))
o 3
= = o 0 e
— L 0
SH— Eo5> o
= ®© — -~
@ z O o =
< 7}
= 2 =
2 <2 @
— c
@]
8 o _
< 5
IS
[e]
8]
PCI Bus
MA12-MAO GPD15-GPDO
w0
= @ 0 >
o MD31-MDO 3 Elan™SC520 Microcontroller @ GPA23-GPAO f@g
o o]
7 2 o >
Control Control
o
T s s 22
) 7] = o
Sl & S el
O (@]
i Iivia O 1
T T a2
= X oG
o &
(40]

DVD or HDD
EIDE

1-12 Elan™SC520 Microcontroller User’s Manual

AMDA

Architectural Overview

Elan™SC520 Microcontroller-Based Telephone Line Concentrator

Reference Design

Figure 1-5

saul
auoyd
Boreuy

T310TL

Trcd6.LWy
a11s1

TycdeLwy
a11sI

Trcd6.LWy
a11s1

TycdeLwy
a11sI

TrezO6.L Wy
JV1SI pend

aoealU|
T3/TL

O11dH

(X0T 01x9)

TrcdeLwy
aI1sI

Trcd6.LWy
aI1s1

TrcdeLwy
aI1sI

TycdeLwy
aI1s1

TrezO6.L Wy
JV1SI pend

PCM Highway

|0nu0D

ISS

GPD15-GPDO

MD31-MDO

Alows\
yseld

GPA25-GPAO

sng d9

Elan™SC520 Microcontroller

sng Nvdds

MA12-MAO

Wvdds

Control

Control

L
(-

_ T
[e1sh1D zHY-ze

L
(-

T
[e1shiD ZHIN-E€

1-13

Elan™SC520 Microcontroller User's Manual

AMDH Architectural Overview

1-14 Elan™SC520 Microcontroller User’s Manual

AMD X\

2 PIN INFORMATION

2.2

OVERVIEW

The ElanSC520 microcontroller contains 258 signal pins plus power and ground signals.
A minimal number of signals are shared with others.

The signals are organized alphabetically within the following functional groups:
m Synchronous DRAM controller (page 2-5)

m ROM/Flash controller (page 2-6)

m PCI bus (page 2-6)

m General-purpose (GP) bus (page 2-7)

m Serial ports (page 2-9)

m Timers (page 2-10)

m Clocks and reset (page 2-10)

m Chip selects (page 2-11)

m Programmable 1/O (PIO) (page 2-11)

m JTAG boundary scan test interface (page 2-12)
m AMDebug interface (page 2-12)

m System test (page 2-12)

m Configuration (page 2-13)

m Power (page 2-14)

LOGIC SYMBOLS

Figure 2-1 shows a logical symbol of the device, with pins grouped by function or interface.
Figure 2-2 shows a logical symbol with pins grouped by default function. Figure 2-2 also
shows pin multiplexing on the ElanSC520 microcontroller.

Elan™SC520 Microcontroller User’s Manual 2-1

AMDZ\

Pin Information

Figure 2-1 Logic Diagram by Interface!

PCI Bus

SDRAM

Serial Ports:
UART 1
UART 2
SSI

Programmable
Input/Output

Clocks and Reset

Notes:

1. Pins noted with asterisks are duplicated in this diagram to clarify which signals are used for each interface.

AD31-ADO
CBE3-CBEO
PAR

SERR
PERR
FRAME
TRDY

IRDY

STOP
DEVSEL
CLKPCIOUT
CLKPCIIN
RST
INTA-INTD
REQ4-REQO
GNT4-GNTO

MA12-MAO
BA1-BAO
MD31-MDO
SCS3-SCS0
CLKMEMOUT
CLKMEMIN
SRASA-SRASB
SCASA-SCASB
SWEA-SWEB
SDQM3-SDQMO
MECC6-MECCO

SOUT2-SOUT1L
SIN2-SIN1
RTS2-RTS1
CTS2-CTS1
DSR2-DSR1
DTR2-DTR1
DCD2-DCD1
RIN2-RINT
SSI_CLK
SSI_DO
SSI_DI

PIO31-PIO0

32KXTAL2-32KXTALL
33MXTAL2-33MXTAL1L
LF_PLL1

CLKTIMER

CLKTEST

PWRGOOD

PRGRESET
BBATSEN

GPA25-GPAO
GPD15-GPDO
GPRESET

GPIORD

GPIOWR
GPMEMRD
GPMEMWR
GPALE

GPBHE

GPRDY

GPAEN

GPTC
GPDRQ3-GPDRQO
GPDACK3-GPDACKO
GPIRQ10-GPIRQO
GPDBUFOE
GPIOCST6
GPMEMCST6
GPCS7-GPCS0

GPA25-GPAO*
GPD15-GPDO*
MD31-MDO*
BOOTCS
ROMCS2-ROMCST
ROMRD

FLASAWR
ROMBUFOE

TMRIN1-TMRINO
TMROUT1-TMROUTO
PITGATE2

PITOUT2

JTAG_TRST
JTAG_TCK
JTAG_TDI
JTAG_TDO
JTAG_TMS

CMDACK
BR/TC
STOP/TX
TRIG/TRACE

WBMSTR2-WBMSTRO
CF_DRAM

DATASTRB
CF_ROM_GPCS
DEBUG_ENTER
INST_TRCE
AMDEBUG_DIS
CFG3-CFGO
RSTLD7-RSTLDO

GP Bus

ROM/Flash

Timers

JTAG

AMDebug

System Test

Configuration

2-2

Elan™SC520 Microcontroller User’s Manual

Pin Information

AMDA

Figure 2-2 Logic Diagram by Default Pin Function'

PCI Bus

SDRAM

Serial Ports:
UART 1
UART 2
SSI

Clocks and Reset

Notes:

AD31-ADO
CBE3-CBEO
PAR

SERR
PERR
FRAME

TRDY

RDY

ST0P
DEVSEL
CLKPCIOUT
CLKPCIIN
RST
NTA-INTD
REQ4-REQO
GNT4-GNTO

MA12-MAO
BA1-BAO
MD31-MDO
SCS3-SCS0
CLKMEMOUT
CLKMEMIN
SRASA-SRASB
SCASA-SCASB
SWEA-SWEB
SDQM3-SDQMO
MECC6-MECCO

SOUT2-SOUT1
SIN2-SIN1
RTS2-RTS1
CTS1

DSR1
DTR2-DTR1
DCD1

RINI

PI028 [CTS2]

PI029 [DSR2]

PIO30 [DCD2]

PI031 [RINZ]

SSI_CLK
SSI_DO
SSI_DI

32KXTAL2-32KXTALL
32MXTAL2-32MXTAL1
LF_PLL1

CLKTIMER [CLKTEST]
PWRGOOD
PRGRESET

BBATSEN

GPA25 {DEBUG_ENTER}
GPA24 {INST_TRCE}

GPA23 {AMDEBUG_DIS}
GPA22-GPA15 {RSTLD7-RSTLDO}
GPA13-GPAO
GPD15-GPDO
GPRESET

GPIORD

GPIOWR

GPMEMRD

GPMEMWR

PIOO [GPALE]

PIO1 [GPBHE]

PIO2 [GPRDY]

PIO3 [GPAEN]

PIO4 [GPTC]

PIO5-PI08 [GPDRQ3-GPDRQO]
PI09-PI012 [GPDACK3-GPDACKO0]
PI013-P1023 [GPIRQ10-GPIRQO]
P1024 [GPDBUFOE]

P1025 [GPIOCS16]

P1026 [GPMEMCS16]

PIO27 [GPCS0]

GPA25-GPAD*

GPD15-GPDO*

MD31-MDO*

BOOTCS

ROMCS2-ROMCSI [GPCS2-GPCS1]
ROMRD

FLASHWR

ROMBUFOE

TMRIN1-TMRINO [GPCS4-GPCS5]
TMROUT1-TMROUTO [GPCS6-GPCS7]

PITGATE2 [GPCS3]
PITOUT2 {CFG3}

JTAG_TRST
JTAG_TCK
JTAG_TDI
JTAG_TDO
JTAG_TMS

CMDACK
BR/TC
STOP/TX
TRIG/TRACE

CF_DRAM [WBMSTR2] {CFG2}
DATASTRB [WBMSTR1] {CFG1}
CF_ROM_GPCS [WBMSTRO] {CFGO}

GP Bus

ROM/Flash

Timers

JTAG

AMDebug

System Test

1. Pinnames in bold indicate the default pin function. Brackets, [], indicate alternate, multiplexed functions. Braces, { }, indicate
pinstrap pins. Pins noted with asterisks are duplicated in this diagram to clarify which signals are used for each interface.

Elan™SC520 Microcontroller User’s Manual

2-3

AMDZ\

Pin Information

2.3

SIGNAL DESCRIPTIONS

Table 2-1 describes the terms used in the signal description table. In general, the brackets,
[], indicate alternate, multiplexed functions, and braces, { }, indicate reset configuration
pins (pinstraps). The line over a pin name indicates an active Low signal. The word pin
refers to the physical wire; the word signal refers to the electrical signal that flows through it.

Table 2-2, “Signal Descriptions” on page 5 contains a description of the ElanSC520
microcontroller signals. The descriptions in Table 2-2 are organized by functional group.
Table 2-2 describes the signals that are available for each interface and which signals are
shared with others. Signal sharing is also shown in Figure 2-2.

Detailed information on pin state, including maximum load values, power-on reset default
function, reset state, power-on reset default operation, hold state, and voltage, is available
in the Elan™SC520 Microcontroller Data Sheet, order #22003. Connection and package
diagrams, as well as pin number assignments, are also included in that document.

Table 2-1

Signal Descriptions Table Definitions

Term ‘

Definition

General Terms

[] Indicates the pin alternate function; a pin defaults to the signal named without the
brackets.
{} Indicates the reset configuration pin (pinstrap).
pin Refers to the physical wire.
signal Refers to the electrical signal that flows across a pin.
SIGNAL | A line over a signal name indicates that the signal is active Low; a signal name
without a line is active High.
Signal Types
Analog Analog voltage
B Bidirectional
H High
| Input
LS Programmable to hold last state of pin
0] Totem pole output
OITS Totem pole output/three-state output
oD Open-drain output
OD-O Open-drain output or totem pole output
Osc Oscillator
PD Internal pulldown resistor (~100-150 kQ)
Power Power pins
PU Internal pullup resistor (~100-150 k)
STI Schmitt trigger input
STI-OD Schmitt trigger input or open-drain output
TS Three-state output

2-4

Elan™SC520 Microcontroller User’s Manual

Pin Information

AMDA

Table 2-2

Signal Descriptions

Signal

Multiplexed
Signal

Type

Description

Synchronous DRAM Controller

BA1-BAO

Bank Address is the SDRAM bank address bus.

CLKMEMIN

SDRAM Clock Input is the SDRAM clock return signal used to
minimize skew between the internal SDRAM clock and the
CLKMEMOUT signal provided to the SDRAM devices. This signal
compensates for buffer and load delays introduced by the board design.

CLKMEMOUT

SDRAM Clock Output is the 66-MHz clock that provides clock
signalling for the synchronous DRAM devices. This clock may require
an external Low skew buffer for system implementations that result in
heavy loading on the SDRAM clock signal.

MA12-MAO

SDRAM Address is the SDRAM multiplexed address bus.

MD31-MDO

SDRAM Data Bus inputs data during SDRAM read cycles and outputs
data during SDRAM write cycles.

MECC6-MECCO

Memory Error Correction Code contains the ECC checksum
(syndrome) bits used to validate and correct data errors.

SCASA-SCASB

Column Address Strobes are used in combination with the SRASA—
SRASB and SWEA-SWEB to encode the SDRAM command type.
SCASA and SCASB are the same signal provided on two different pins
to reduce the total load connected to CAS.
Suggested system connection:

SCASA for SDRAM banks 0 and 1

SCASB for SDRAM banks 2 and 3

SCS3-SCSO

SDRAM Chip Selects are the SDRAM chip-select outputs. These
signals are asserted to select a bank of SDRAM devices. The chip-
select signals enable the SDRAM devices to decode the commands
asserted via SRASA-SRASB, SCASA-SCASB, and SWEA-SWEB.

SDQM3-SDQMO

Data Input/Output Masks make SDRAM data output high-impedance
and blocks data input on SDRAM while active. Each of the four
SDQM3-SDQMO signals is associated with one byte of four
throughout the array. Each SDQMx signal provides an input mask
signal for write accesses and an output enable signal for read
accesses.

SRASA-SRASB

Row Address Strobes are used in combination with the SCASA-
SCASB and SWEA-SWEB to encode the SDRAM command type.
SRASA and SRASB are the same signal provided on two different pins
to reduce the total load connected to RAS.
Suggested system connection:

SRASA for SDRAM banks 0 and 1

SRASB for SDRAM banks 2 and 3

SWEA-SWEB

SDRAM Memory Write Enables are used in combination with the
SRASA-SRASB and SCASA-SCASB to encode the SDRAM
command type.
SWEA and SWEB are the same signal provided on two different pins
to reduce the total load connected to WE.
Suggested system connection:

SWEA for SDRAM banks 0 and 1

SWEB for SDRAM banks 2 and 3

Elan™SC520 Microcontroller User’s Manual 2-5

AMDZ\

Pin Information

Table 2-2

Signal Descriptions (Continued)

Signal

Multi

plexed

Signal

Type

Description

ROM/Flash Controller

BOOTCS

o

ROM/Flash Boot Chip Select is an active Low output that provides
the chip select for the startup ROM and/or the ROM/Flash array (BIOS,
HAL, O/S, etc.). The BOOTCS signal asserts for accesses made to the
64-Kbyte segment that contains the Am5,86 CPU boot vector:
addresses 3FF0000h—3FFFFFFh. In addition to this linear decode
region, BOOTCS asserts in response to accesses to user-
programmable address regions.

FLASHWR

Flash Write indicates that the current cycle is a write of the selected
Flash device. When this signal is asserted, the selected Flash device
can latch data from the data bus.

GPA25-GPAO

General-Purpose Address Bus provides the address to the system’s
ROM/Flash devices. It is also the address bus for the GP bus devices.
Twenty-six address lines provide a maximum addressable space of 64
Mbytes for each ROM chip select.

GPD15-GPDO

General-Purpose Data Bus inputs data during memory and 1/O read
cycles and outputs data during memory and 1/O write cycles.

A reset configuration pin (CFG2) allows the GP bus to be used for the
boot chip-select ROM interface. Configuration registers are used to
select whether ROMCS2 and ROMCS1 use the GP bus data bus or
the MD data bus. The GP data bus supports 16-bit or 8-bit ROM
interfaces. Two data buses are selectable to facilitate the use of ROM
in a mixed voltage system.

MD31-MDO

Memory Data Bus inputs data during SDRAM read cycles and
outputs data during SDRAM write cycles. Configuration registers are
used to select whether ROMCS2 and ROMCS1 use the GP bus data
bus or the MD data bus. A reset configuration pin (CFG2) allows the
GP data bus to be used for BOOTCS. The memory data bus supports
an 8-, 16-, or 32-bit ROM interface.

ROMBUFOE

ROM Buffer Output Enable is an optional signal used to enable a
buffer to the ROM/Flash devices if they need to be isolated from the
ElanSC520 microcontroller, other GP bus devices, or SDRAM system
for voltage or loading considerations. This signal asserts for all
accesses through the ROM controller. The buffer direction is controlled
by the ROMRD or FLASHWR signal.

ROMCS2

[GPCS2)

o

ROMCS1

[GPCSI]

@]

ROM/Flash Chip Selects are signals that can be programmed to be
asserted for accesses to user-programmable address regions.

ROMRD

ROM/Flash Read indicates that the current cycle is a read of the
selected ROM/Flash device. When this signal is asserted, the selected
ROM device can drive data onto the data bus.

Peripheral Component Interconnect

(PCI) Bus

AD31-ADO

B

PCI Address Data Bus is the PCI time-multiplexed address/data bus.

CBE3-CBEO

B

Command or Byte-Enable Bus functions 1) as a time-multiplexed
bus command that defines the type of transaction on the AD bus,
or 2) as byte enables:

CBEO for AD7-ADO

CBEL1 for AD15-ADS8

CBE2 for AD23-AD16

CBE3 for AD31-AD24

CLKPCIIN

PCI Bus Clock Input is the 33-MHz PCI bus clock. This pin can be
connected to the CLKPCIOUT pin for systems where the ElanSC520
microcontroller is the source of the PCI bus clock.

Elan™SC520 Microcontroller User’s Manual

Pin Information

AMDA

Table 2-2 Signal Descriptions (Continued)
Multiplexed

Signal Signal Type | Description

CLKPCIOUT — (0] PCI Bus Clock Output is a 33-MHz clock output for the PCI bus
devices. This signal is derived from the 33MXTAL2-33MXTAL1
interface.

DEVSEL — B Device Select is asserted by the target when it has decoded its
address as the target of the current transaction.

FRAME — B Frame is driven by the transaction initiator to indicate the start and
duration of the transaction.

GNT4-GNTO — (0] Bus Grants are asserted by the ElanSC520 microcontroller to grant
access to the bus.

INTA-INTD — | Interrupt Requests are asserted to request an interrupt. These four
interrupts are the same type of interrupt as the GPIRQ10-GPIRQO
signals, and they go to the same interrupt controller. They are named
INTx to match the common PCI interrupt naming convention.
Configuration registers allow inversion of these interrupt requests to
recognize active low interrupt requests. These interrupt requests can
be routed to generate NMI.

IRDY — B Initiator Ready is asserted by the current bus master to indicate that
data is ready on the bus (write) or that the master is ready to accept
data (read).

PAR — B PCI Parity is driven by the initiator or target to indicate parity on the
AD31-ADO0 and CBE3-CBEO buses.

PERR — B Parity Error is asserted to indicate a PCI bus data parity error in the
previous clock cycle.

REQ4-REQO — | Bus Requests are asserted by the master to request access to the
bus.

RST — (0] Reset is asserted to reset the PCI devices.

SERR — | System Error is used for reporting address parity errors or any other
system error where the result is catastrophic.

STOP — B Stop is asserted by the target to request that the current bus
transaction be stopped.

TRDY — B Target Ready is asserted by the currently addressed target to indicate
its ability to complete the current data phase of a transaction.

General-Purpose (GP) Bus

GPA14-GPAO — (0] General-Purpose Address Bus outputs the physical memory or /10

GPA15 {RSTLDO} ofl} port address. Twenty-six address lines provide a maximum
addressable space of 64 Mbytes. This bus also provides the address

GPA16 {RSTLD1} Ofl} to the system’s ROM/Flash devices.

GPA17 {RSTLD2} ofl}

GPA18 {RSTLD3} o{l}

GPA19 {RSTLD4} ofl}

GPA20 {RSTLD5} of{l}

GPA21 {RSTLD6} ofl}

GPA22 {RSTLD7} of{l}

GPA23 {AMDEBUG_DIS} of1}

GPA24 {INST_TRCE} ofl}

GPA25 {DEBUG_ENTER} o{1}

Elan™SC520 Microcontroller User’s Manual

AMDZ\

Pin Information

Table 2-2 Signal Descriptions (Continued)
Multiplexed

Signal Signal Type | Description

[GPAEN] P103 (0] GP Bus Address Enable indicates that the current address on the
GPA25-GPAOQ address bus is a memory address, and that the current
cycle is a DMA cycle. All 1/O devices should use this signal in decoding
their 1/0 addresses and should not respond when this signal is
asserted. When GPAEN is asserted, the GPDACKX signals are used
to select the appropriate I/O device for the DMA transfer. GPAEN also
asserts when a DMA cycle is occurring internally.

[GPALE] P1O0 (0] GP Bus Address Latch Enable is driven at the beginning of a GP bus
cycle with valid address. This signal can be used by external devices
to latch the GP address for the current cycle.

[GPBHE] PIO1 (0] GP Bus Byte High Enable is driven active when data is to be
transferred on the upper 8 bits of the GP data bus.

GPD15-GPDO — B General-Purpose Data Bus inputs data during memory and 1/O read
cycles, and outputs data during memory and 1/O write cycles.

[GPDACKO] P1012 (0] GP Bus DMA Acknowledge can each be mapped to one of the seven

EPPACKA available DMA channels. They are asserted active Low to

[GPDACK1] PIO11 o) y

I acknowledge the corresponding DMA requests.

[GPDACK?2] PIO10 o

[GPDACK3] PIO9 (0]

[GPDBUFOE] P1024 (0] GP Bus Data Bus Buffer Output Enable is used to control the output
enable on an external transceiver that may be on the GP data bus.
Using this transceiver is optional in the system design and is
necessary only to alleviate loading or voltage issues. This pin is
asserted for all external GP bus accesses. It is not asserted during
accesses to the internal peripherals even if GP bus echo mode is
enabled.

Note that if the ROM is configured to use the GP data bus, then its
bytes are not controlled by this buffer enable; they are controlled by the
ROMBUFOE signal.

[GPDRQO] P108 I GP Bus DMA Request can each be mapped to one of the seven
available DMA channels. They are asserted active High to request

[GPDRQ1] PIO7 [y 9 q
DMA service.

[GPDRQ2] PIO6 |

[GPDRQ3] PIO5 I

[GPIOCS16] P1025 STI GP Bus I/O Chip-Select 16 is driven active early in the cycle by the
targeted 1/O device on the GP bus to request a 16-bit I/O transfer.

GPIORD — o] GP Bus /0 Read indicates that the current cycle is a read of the
currently addressed 1/O device on the GP bus. When this signal is
asserted, the selected 1/O device can drive data onto the data bus.

GPIOWR — (0] GP Bus I/O Write indicates that the current cycle is a write of the
currently addressed 1/O device on the GP bus. When this signal is
asserted, the selected I/O device can latch data from the data bus.

Elan™SC520 Microcontroller User’s Manual

Pin Information AMD:'

Table 2-2 Signal Descriptions (Continued)
Multiplexed

Signal Signal Type | Description

[GPIRQOQ] P1023 | GP Bus Interrupt Request can each be mapped to one of the

[GPIRQ1] P1022 | ava_ilable interru_pt c_hannels or NMI. They are asserted when a
peripheral requires interrupt service.

[GPIRQZ] PlO21 ' Configuration registers allow inversion of these interrupt requests to

[GPIRQ3] P1020 | recognize active low interrupt requests. These interrupt requests can

[GPIRQ4] PIO19 | be routed to generate NMI.

[GPIRQ5] PIO18 I

[GPIRQ6] PIO17 |

[GPIRQ7] PIO16 I

[GPIRQ8] PIO15 |

[GPIRQY] PIO14 I

[GPIRQ10] PIO13 |

[GPMEMCS16] P1026 STI GP Bus Memory Chip-Select 16 is driven active early in the cycle by
the targeted memory device on the GP bus to request a 16-bit
memory transfer.

[GPMEMRD] — (0] GP Bus Memory Read indicates that the current GP bus cycle is a
read of the selected memory device. When this signal is asserted, the
selected memory device can drive data onto the data bus.

[GPMEMWR] — (0] GP Bus Memory Write indicates that the current GP bus cycle is a
write of the selected memory device. When this signal is asserted, the
selected memory device can latch data from the data bus.

[GPRDY] P102 STI GP Bus Ready can be driven by open-drain devices. When pulled Low
during a GP bus access, wait states are inserted in the current cycle.
This pin has an internal weak pullup that should be supplemented by
a stronger external pullup for faster rise time.

GPRESET — (@] GP Bus Reset, when asserted, re-initializes to reset state all devices
connected to the GP bus.

[GPTC] P104 (0] GP Bus Terminal Count is driven from the internal DMA controller to
indicate that the transfer count for the currently active DMA channel
has reached zero, and that the current DMA cycle is the last transfer.

Serial Ports

CTS1 — | Clear To Send is driven back to the serial port to indicate that the

CTS2 P1028 | external data carrier equipment (DCE) is ready to accept data.

DCD1 — | Data Carrier Detect is driven back to the serial port from a piece of

[DCD2] PIO30 | DCE when it has detected a carrier signal from a communications
target.

DSR1 — | Data Set Ready is used to indicate that the external DCE is ready to

[DSR2] PIO29 | establish a communication link with the internal serial port controller.

DTR2-DTR1 — (0] Data Terminal Ready indicates to the external DCE that the internal
serial port controller is ready to communicate.

RIN1 — | Ring Indicate is used by an external modem to inform the serial port

[RINZ] PIO31 | that a ring signal was detected.

RTS2-RTS1 — (0] Request To Send indicates to the external DCE that the internal serial
port controller is ready to send data.

SIN2-SIN1 — | Serial Data In is used to receive the serial data from the external serial
device or DCE into the internal serial port controller.

SOUT2-SOUT1 — (0] Serial Data Out is used to transmit the serial data from the internal
serial port controller to the external serial device or DCE.

Elan™SC520 Microcontroller User’s Manual 2-9

AMDZ\

Pin Information

Table 2-2 Signal Descriptions (Continued)
Multiplexed

Signal Signal Type [Description

SSI_CLK — (0] SSI Clock is driven by the ElanSC520 microcontroller SSI port during
active SSI transmit or receive transactions. The idle state of the clock
and the assertion/sample edge are configurable.

SSI_DI — STI SSI Data Input receives incoming data from a peripheral device SSI
port. Data is shifted in on the opposite SSI_CLK signal edge in which
SSI_DO drives data. SSI_DO and SSI_DI can be tied together to
interface to a three-pin SSI peripheral.

SSI_DO — oD SSI Data Output drives data to a peripheral device SSI port. Data is
driven on the opposite SSI_CLK signal edge in which SSI_DI latches
data. The DO signal is normally at high-impedance when no transmit
transaction is active on the SSI port.

Timers

PITGATE2 [GPCS3] | Programmable Interval Timer 2 Gate provides control for the PIT
Channel 2.

PITOUT2 (CFG3} o{l} Programmabl_e Ir_ltervgl Timer 2 Output is output from the _PIT
Channel 2. This signal is typically used as the PC speaker signal.

TMRINO [GPCS5E] | Timer Inputs 0 and 1 can be programmed to be the control or clock

TMRIN1 [GPCS4] | for the general-purpose (GP) timers 0 and 1.

TMROUTO [GPCS7] (0] Timer Outputs 0 and 1 are outputs from two of the GP timers. These

TMROUT1 [GPCS6] o outputs can be used as pulse-width modulation signals.

Clocks and Reset

32KXTAL2— — 0osc 32.768-kHz Crystal Interface is used for connecting an external

32KXTAL1 crystal or oscillator to the ElanSC520 microcontroller. This clock
source is used to clock the real-time clock (RTC). In addition, internal
PLLs generate clocks for the timers and UARTSs based on this clock
source. When an external oscillator is used, 32KXTAL1 should be
grounded and the clock source driven on 32KXTAL2.

33MXTAL2—- — 0osc 33-MHz Crystal Interface is the main system clock for the chip. This

33MXTAL1 clock source is used to derive the SDRAM, CPU, and PCI clocks.
When an external oscillator is used, 33MXTALL1 should be
unconnected and the clock source driven on 33MXTAL2.

[CLKTEST] CLKTIMER (0] Test Clock Output is a shared pin that allows many of the internal
clocks to be driven externally. CLKTEST can drive the internal clocks
of the UARTS, PLL1, PLL2, the programmable interval timer (PIT), or
the real-time clock (RTC) for testing or for driving an external device.

CLKTIMER [CLKTEST] | Timer Clock Input is a shared clock pin that can be used to input a
frequency to the programmable interval timer (PIT).

LF_PLL1 — | Loop Filter Interface is used for connecting external loop filter
components. Component values and circuit descriptions are contained
in the Elan™SC520 Microcontroller Data Sheet, order #22003.

PRGRESET — STI Programmable Reset can be programmed to reset the ElanSC520
microcontroller, but allow SDRAM refresh to continue during the reset.
This allows the system to be reset without losing the information stored
in SDRAM. On power-up, PRGRESET is disabled and must be
programmed to be operational. When disabled, this pin has no effect
on the ElanSC520 microcontroller.

PWRGOOD — STI Power Good is a reset signal that indicates to the ElanSC520

microcontroller that the V¢ levels are within the normal operation
range. It is used to reset the entire chip and must be held Low for one
second after all V¢ signals (except VCC_RTC) on the chip are High.
This signal must be returned Low before the V¢ signals degrade to
put the RTC into the correct state for operation in RTC-only mode.

2-10

Elan™SC520 Microcontroller User’s Manual

Pin Information

AMDA

Table 2-2 Signal Descriptions (Continued)
Multiplexed

Signal Signal Type | Description

Chip Selects

[GPCSO0] P1027 (0] General-Purpose Chip Select signals are for the GP bus. They can

[GPCS1] ROMCS1 o be used for either memory or I/0O accesses. These chip selec_ts are
asserted for Am5,86 CPU accesses to the corresponding regions set

[GPCS2] ROMCS2 o up in the Programmable Address Region (PAR) registers.

[GPCS3] PITGATE2 0]

[GPCS4] TMRIN1 o}

[GPCS5] TMRINO o}

[GPCS6] TMROUT1 o)

[GPCST] TMROUTO o}

Programmable 1/0 (PIO)

P100 [GPALE] B Programmable Input/Output signals can be programmed as inputs

PIO1 [GPBHE] B or outputs._ Whe_n t_hey are outputs, they can be driven High or Low by
programming bits in registers.

PIO2 [GPRDY] B

PIO3 [GPAEN] B

PIO4 [GPTC] B

PIO5 [GPDRQ3] B

PIO6 [GPDRQ?2] B

PIO7 [GPDRQ1] B

PIO8 [GPDRQO] B

PIO9 [GPDACK3] B

PIO10 [GPDACK?Z] B

PIO11 [GPDACKI] B

PIO12 [GPDACKO] B

PIO13 [GPIRQ10] B

PIO14 [GPIRQY] B

PIO15 [GPIRQS] B

PIO16 [GPIRQ7] B

PIO17 [GPIRQ6] B

PlIO18 [GPIRQ5] B

PIO19 [GPIRQ4] B

PI020 [GPIRQ3] B

PIO21 [GPIRQ2] B

PI022 [GPIRQ1] B

PI023 [GPIRQO] B

PIO24 [GPDBUFOE] B

P1025 [GPIOCS16] B

PIO26 [GPMEMCS16] B

PI027 [GPCSO] B

PIO28 [CTS2] B

P1029 [DSR2] B

PIO30 [DCD2] B

PIO31 [RIN2] B

Elan™SC520 Microcontroller User’s Manual

2-11

AMDZ\

Pin Information

Table 2-2

Signal Descriptions (Continued)

Signal

Multiplexed
Signal

Type

Description

JTAG Boundary Scan Test Interface

JTAG_TCK

Test Clock is the input clock for test access port.

JTAG_TDI

Test Data Input is the serial input stream for input data. This pin has
a weak internal pullup resistor. It is sampled on the rising edge of
JTAG_TCK. If not driven, this input is sampled High internally.

JTAG_TDO

oITs

Test Data Output is the serial output stream for result data. It is in the
high-impedance state except when scanning is in progress.

JTAG_TMS

Test Mode Select is an input for controlling the test access port. This
pin has a weak internal pullup resistor. If it is not driven, it is sampled
High internally.

JTAG_TRST

JTAG Reset is the test access port (TAP) reset. This pin has a weak
internal pulldown resistor. If not driven, this input is sampled Low
internally and causes the TAP controller logic to remain in the reset
state.

AMDebug Interface

BR/TC

Break Request/Trace Capture requests entry to AMDebug
technology mode. The AMDebug technology serial/parallel interface
can reconfigure this pin to turn instruction trace capture on or off.

CMDACK

Command Acknowledge indicates command completion status. It is
asserted High when the in-circuit emulator logic is ready to receive
new commands from the host. It is driven Low when the in-circuit
emulator core is executing a command from the host and remains Low
until the command is completed.

STOP/TX

Stop/Transmit is asserted High on entry to AMDebug mode. During
normal mode, this is set High when there is data to be transmitted to
the host (during operating system/application communication).

TRIG/TRACE

Trigger/Trace triggers event to logic analyzer (optional, from Am5,86
CPU debug registers).The AMDebug technology serial/parallel
interface can reconfigure this pin to indicate the trace on or off status.

System Test

CF_DRAM

[WBMSTR2]
{CFG2}

ofl}

Code Fetch SDRAM, during SDRAM reads, provides code fetch
status. When Low, this indicates that the current SDRAM read is a
CPU code fetch demanded by the CPU, or a read prefetch initiated due
to a demand code fetch by the CPU. When High during reads, this
indicates that the SDRAM read is not a code fetch, and it could have
been initiated by the CPU, PCI master, or the GP bus GP-DMA
controller, either demand or prefetch. During SDRAM write cycles this
pin provides an indication of the source of the data, either GP-DMA
controller/PCI bus master or CPU. When High, this indicates that
either a GP bus DMA initiator or an external PCI bus master
contributed to the current SDRAM write cycle (the CPU may also have
contributed). A Low indicates that the CPU is the only master that
contributed to this write cycle.

CF_ROM_GPCS

[WBMSTRO]
{CFGO}

ofl}

Code Fetch ROM/GPCS provides an indication that the CPU is
performing a code fetch from ROM (on either the GP bus or SDRAM
data bus), or from any GPCSx pin. When Low during a read cycle (as
indicated by either GPMEMRD or ROMRD), the CPU is performing a
code fetch from ROM or a GP bus chip select. At all other times
(including writes), this signal is High.

DATASTRB

[WBMSTR1]
{CFG1}

ofl}

Data Strobe is a debug signal that is asserted to allow the external
system to latch SDRAM data. This can be used to trace data on the
SDRAM interface with an in-circuit emulator probe or logic analyzer.

2-12

Elan™SC520 Microcontroller User’s Manual

Pin Information

AMDA

Table 2-2 Signal Descriptions (Continued)
Multiplexed
Signal Signal Type | Description
[WBMSTROQ] CF_ROM_GPCS O{1} Write Buffer Master indicates which block(s) wrote to a rank in the
{CFGO0} write buffer (during SDRAM write cycles) and which block is reading
from SDRAM (during SDRAM read cycles).
WBMSTRO, when a logical 1, indicates that the internal GP bus DMA
controller has contributed to the write buffer rank (write cycles) or is
reading from SDRAM (read cycles).
[WBMSTR1] DATASTRB ofl} WBMSTR1, when a logical 1, indicates that the PCI master has
{CFG1} contributed to the write buffer rank (write cycles) or is reading from
SDRAM (read cycles).
[WBMSTR2] CF_DRAM ofl} WBMSTR2, when alogical 1, it indicates that the CPU has contributed
{CFG2} to the write buffer rank (write cycles) or is reading from SDRAM (read
cycles).
Configuration
{AMDEBUG_DIS} | GPA23 | AMDebug Disable is an active High configuration signal latched at the

assertion of Power Good (PWRGOOD). This pin has a built-in
pulldown resistor.
At Power Good assertion:

Low = Normal operation, mode can be enabled by software.

High = AMDebug mode is disabled and cannot be enabled by software.

{CFGO}

{CFG1}

{CFG2}

{CFG3}

CF_ROM_GPCS
[WBMSTRO]

DATASTRB
[WBMSTR1]

CF_DRAM
[WBMSTR2]

PITOUT2

Configuration Inputs 3—0 are latched into the chip when PWRGOOD
is asserted. These signals are all shared with other features. These
signals have built-in pulldown resistors.

CFGO: Choose 8-, 16-, or 32-bit ROM/Flash interface for BOOTCS.

CFG1: Choose 8-, 16-, or 32-bit ROM/Flash interface for BOOTCS.

CFG1 CFGO BOOTCS Data Width
0 0 8-bit
0 1 16-bit
1 X (don't care) 32-bit

CFG2: When Low when PWRGOOD is asserted, the ElanSC520
microcontroller uses the GP data bus for BOOTCS. When seen as
High during PWRGOOD assertion, the BOOTCS access is across the
SDRAM data bus. Default is Low (by a built-in pulldown resistor).

CFG3 (Internal AMD test mode enable): For normal ElanSC520
microcontroller operation, do not pull High during reset.

{DEBUG_ENTERY}

GPA25

Enter AMDebug Mode is an active High configuration signal latched
at the assertion of Power Good (PWRGOOD). This pin enables the
AMDebug mode, which causes the processor to fetch and execute one
instruction from the BOOTCS device, and then enter AMDebug mode
where the CPU waits for debug commands to be delivered by the JTAG
port. This pin has a built-in pulldown resistor.
At PWRGOOD assertion:

High = AMDebug mode enabled

Low = Normal operation

{INST_TRCE}

GPA24

Instruction Trace is an active High configuration signal latched at the
assertion of Power Good (PWRGOOD). Enables trace record
generation from Power Good assertion. This pin has a built-in
pulldown resistor.
At PWRGOOD assertion:

High = Trace controller enabled to output trace records

Low = Normal operation

Elan™SC520 Microcontroller User’s Manual 2-13

AMDZ\

Pin Information

Table 2-2 Signal Descriptions (Continued)
Multiplexed

Signal Signal Type | Description

{RSTLDO} GPA15 I Reset Latched Inputs are shared signals that are latched into a

{RSTLD1} GPA16 | _register yvhen PWRGOQD is asserted_. _They are usepl to input statig
information to software (i.e., board revision). These signals have built-

{RSTLDZ} GPA17 ' in pulldown resistors.

{RSTLD3} GPA18 [

{RSTLD4} GPA19 I

{RSTLDS5} GPA20 [

{RSTLDE6} GPA21 I

{RSTLD7} GPA22 [

Power

BBATSEN — Analog | Backup Battery Sense is a pin on which real-time clock (RTC) backup
battery voltage is sampled each time PWRGOOD is asserted. If this
pin samples below 2.0 V, the Valid RAM and Time (VRT) bit in RTC
index ODh is cleared until read. After the read, the VRT bit is set until
BBATSEN is sensed via a subsequent PWRGOOD assertion.
BBATSEN also provides a power-on-reset signal for the RTC when an
RTC backup battery is applied for the first time.

VCC_ANLG — Power | Analog Power Supply for the analog circuits (PLLS).

VCC_CORE — Power | Power Supply for the ElanSC520 microcontroller core logic.

VCC_I/O — Power | Power Supply to the I/O pad ring.

VCC_RTC — Power | Power Supply for the real-time clock and 32-kHz oscillator.

GND — Power | Digital Ground for the remaining ElanSC520 microcontroller core logic.

GND_ANLG — Power | Analog Ground for the analog circuits.

2-14 Elan™SC520 Microcontroller User's Manual

AMD X\

3 SYSTEM INITIALIZATION

3.1

3.1.1

OVERVIEW

This chapter provides information and guidelines for initializing the ElanSC520
microcontroller. Several source code examples of information described in this chapter are
available on the AMD web site. This CodeKit software is tested source code for example
applications. To obtain this software, as well as other product information and tools, access
the AMD home page at www.amd.com and follow the Embedded Processors link.

From a software perspective, the types of systems that can be developed with the
ElanSC520 microcontroller fall into two broad categories, native embedded systems and
systems that use a BIOS?.

Of course, these are not the only types of systems that can be built with the ElanSC520
microcontroller. It is quite possible to develop hybrid systems that have a BIOS but do not
run a “desktop” operating system like Windows®, DOS, Unix, or Linux. While there are
many possible ways to initialize the ElanSC520 microcontroller, any initialization sequence
can be derived from the following two techniques.

m System initialization with a BIOS
m System initialization for a native embedded system without a BIOS

For systems with a BIOS, most, or all, of the system initialization is done by the BIOS while
the system is running in real mode. After initialization, the BIOS loads an operating system
or application from nonvolatile media, which is generally a disk drive, but could be Flash
memory or other media. The operating system or application begins operating in real mode
and then may make its own transition into protected mode. Windows 95 and Windows NT®
are examples of such operating systems. Real-time operating systems can also operate in
this manner.

BIOS initialization can be complex. Some BIOS products may make a temporary transition
into protected mode to perform certain operations and then revert back to real mode, before
passing execution to an operating system or application. Such behavior is dependent on
how the BIOS is written and the features provided and are beyond the scope of this
discussion.

For embedded systems, the initialization sequence is usually much simpler and generally
occurs primarily in protected mode. In this scenario, the processor comes up from a reset
and transitions into protected mode as soon as possible. The only real-mode code in the
system is the code required to jump from the reset vector and the execute code that causes
the ElanSC520 microcontroller to transition into protected mode.

Native Embedded Initialization Sequence

Many systems designed with the ElanSC520 microcontroller are native embedded systems
that do not have a BIOS. The software architecture for such systems can take many forms.

1. ABIOS is a PC software component. It is a set of real-mode code that is responsible for
initializing the system and providing a standard set of I/O and system services used by an
operating system and application level software. These services are provided via a standard
interface.

Elan™SC520 Microcontroller User’s Manual 3-1

AMDZ\

System Initialization

Some use a commercial real-time operating system (RTOS), a custom RTOS, or a simple
‘main loop’ or non-preemptive executive. In general, the executive or RTOS generally
interfaces to the hardware using a hardware dependent layer called a board support
package (BSP)*.

In general, the system initialization flow for a native embedded system follows this
sequence:

< Reset event >
Near Junp to reset handler fromthe reset vector
Switch to sinple protected node
Determ ne the cause of the reset
Initialize the DRAM control |l er and DRAM Size the DRAM
Setup a Stack and begin execution from “C” code
if (NOT Execute-In-Place) then

Copy the Operating System to DRAM

Jump to the operating system'’s entry point

0 Set up the Global Descriptor Table (GDT), Local Descriptor Table (LDT),

Interrupt Descriptor Table (IDT), fault handlers, page tables, and a
Task State Segment (TSS) for the operating system, application or

P OoO~NOOORAWNEER

executive.
11 Set the processor speed
12 Configure the GP bus timings
13 Configure the pin multiplexing
14 Configure the GP bus chip selects
15 Configure the Programmable Address Region (PAR) registers
16 Configure the interrupt mappings
17 Configure the programmable 1/0 (PIO) pins
18 Configure the PCI bus controller and arbitration mode
19 Initialize a periodic timer interrupt (if necessary)
20 Now, the BSP can initialize devices external to the ElanSC520

microcontroller and otherwise continue to start the operating system,
I/O drivers and application.

In the above example, the switch to simple protected mode (line 3) sets the processor CS
register and the CS descriptor cache. This disables the redirection of the reset region to
the reset segment (see “Reset Vector and Reset Segment” on page 3-5 for more
information).

Inline 3above, the term simple protected mode means that the protected mode environment
(GDT, LDT, IDT, and TSS) is the simplest kind possible. For example, both the LDT and
IDT can be empty and the TSS and GDT can contain minimal information. Or, alternatively,
the IDT can be empty. This means that exceptions cannot be handled, but this should not
be a problem for the short period that the initialization code runs. More importantly, the TSS
and GDT for simple protected mode can be contained in read-only memory (usually Flash)
and do not have to be created at runtime. Once the DRAM is operational, then more
extensive GDT, LDT, and IDT tables and one or more appropriate TSS can be setup in
DRAM.

1. There is no standard term for this component. Other terms for BSP are OEM Adaptation
Layer (OAL), Hardware Adaptation Layer (HAL), or Porting Layer. A BSP is like a BIOS, but is
almost always unique to a specific executive or RTOS. This is especially true for comercially
available RTOS products. A BSP for one vendor's RTOS generally does not work with products
from another vendor. Also, where a BIOS is most often a 16-bit real-mode entity, a BSP is
usually a 32-bit protected mode entity. Lastly, operating systems and applications always
communicate with a BIOS using software interrupts (or other run-time mechanisms), but a BSP
is often linked directly to an executive or application to form a single executable and is called
directly using the CALL instruction.

3-2

Elan™SC520 Microcontroller User’s Manual

System Initialization AMD:'

3.1 l2

3.1.3

Some embedded systems execute from read-only memory (usually Flash) and only use
DRAM for data storage. This style of system architecture is supported by most RTOS
products. This is reflected in line 7. Systems that execute out of Flash memory do not need
to copy the operating system and/or application to DRAM.

Another interesting point is that once the DRAM controller is initialized, then the initialization
code can setup a stack and finish the reset of its work in a high-level language (usually C).

BIOS Initialization Sequence

In contrast to a native embedded system, the flow of system initialization with a BIOS
generally follows this sequence:

1 < Reset event >
2 Near Junp to reset handler fromthe reset vector
3 Map the Menory- Mapped Configuration Region (MMCR) to an address bel ow

0010FFEFh (real -npde address limt)
4 Det erm ne the cause of the reset
5 Initialize the DRAM controller and DRAM Size the DRAM record in CMOS
6 Copy the BIGS i nto DRAM (shadow ng)
7 Execute a Far Junp within the BIOS code to start execution out of the
shadowed BI OS copy instead of the copy in ROM

8 Set up basic interrupt handlers for processor faults

9 Detect the CPU I D and display on the consol e

10 Set the processor speed

11 Configure the GP bus timngs

12 Configure the pin multiplexing

13 Configure the GP bus chip selects

14 Configure the Programuabl e Address Regi on (PAR) registers
15 Configure the interrupt mappi ngs

16 Configure the programmable I/0O (Pl O pins

17 Configure the PCl bus controller and arbitration

18 Now, the BI OS can continue with standard PC-style systeminitialization

There are some important contrasts between the steps for a system with a PC BIOS and
those for a native embedded system.

m Steps 1 through 6 are done in real mode while executing from the reset segment before
executing the first Far Jump (JMP) instruction. This is in contrast to the initialization for
a native embedded system, which transitions to simple protected mode before these
steps.

m The Memory-Mapped Configuration Region (MMCR) needs to be mapped to a region
below 00100000h soitis accessible by real-mode software. 32-bit protected-mode native
embedded systems do not need to move the MMCR.

m The remainder of the system initialization is done in real mode from the BIOS image
running from DRAM. This is in contrast to an embedded system, which does all of its
initialization from 32-bit protected mode (running either from DRAM or Flash).

Memory-Mapped Configuration Region (MMCR)

The Memory-Mapped Configuration Region (MMCR) is a 4-Kbyte area located at physical
address FFFEFO00h and contains various configuration and control registers for the
ElanSC520 microcontroller. Configuring and controlling many of the device’s features
requires accessing the MMCR registers. System initialization code for a native embedded
system can access this region directly because most (or all) initialization takes place from
32-bit protected mode.

Elan™SC520 Microcontroller User’s Manual 3-3

AMDZ\

System Initialization

3.1.4

In contrast, real-mode code cannot access physical memory above 0010FFEFh (the real-
mode addressing limit), and thus cannot access the default location of the MMCR. This
problem s easily resolved by programming the Configuration Base Address (CBAR) register
(Port FFFCh) to place the MMCR at an address somewhere below the real-mode
addressing limit. This allows real-mode initialization code to directly access the MMCR.
This is done in step 3 of the BIOS initialization sequence.

Note: Programming the Configuration Base Address (CBAR) register can place the MMCR
at an address other than its default. However, the MMCR region is always accessible at its
default location of FFFEFOOOh, regardless of how the CBAR register is programmed.

Reset Event
The ElanSC520 microcontroller has three primary classes of resets.

m System reset (often called a hard reset or power-on reset)
m System reset with SDRAM retention (called programmable reset)
m Soft reset (often called warm start)

For more information on resetting the ElanSC520 microcontroller, see Chapter 6, “Reset
Generation”, and “Initialization” on page 7-5.

Often, systems have a hardware reset button or other external devices that can cause a
reset. For the ElanSC520 microcontroller, all of these cause a system reset. However, there
are many ways to implement external reset logic. After a reset (of any kind), boot software
can determine what caused the reset by examining various status bits.

A common and effective method of handling a reset is to determine the cause of the reset
and record the event in the CMOS memory, or in some other non-volatile memory such as
an EEPROM, non-volatile DRAM, or Flash. Debugging or diagnostic software could then
examine and report the causes of the last few resets. This can be very helpful when trying
to determine the cause of system problems. Note that the system could record other
information as well; the time and date of the reset event is a good example.

When a system reset occurs (regardless of the source) internal registers and logic blocks
are set to their power-on reset state. Therefore, if a system reset occurs, the boot software
must initialize the system from scratch.

There is one exception to this, called programmable reset. This function is enabled via the
PRG_RST_ENB bit in the Reset Configuration (RESCFG) register (MMCR offset D72h).
If this bit is set, assertion of the PRGRESET pin, SYS_RST bit, watchdog timer system
reset event, or AMDebug technology system reset event while PWRGOOD is asserted will
resultin a system reset in which the SDRAM configuration (SDRAM type, number of banks,
refresh rate, etc.) is maintained so that the contents of SDRAM are preserved. SDRAM
controller parameters retained include the SDRAM type, number of banks, refresh rate,
and signal drive strength. This feature allows the system to be reset while guaranteeing
that the contents of SDRAM are not disturbed. This can be very valuable for system
debugging or for systems that require minimal startup time. This reset condition can be
detected by software. Note that, once programmable reset has been enabled, all system
resets other than PRWGOOD deassertion are converted to this type.

When a soft reset occurs, the system may be able to restart if the operating system saved
enough state information. For example, an old 80286-style operating system (e.g., OS/2)
causes a processor reset in order to return to real mode and call 16-bit BIOS routines.

Note: It is important to understand that, for most systems, a soft reset does not need to
be handled much differently than a system reset. For example, a system that does not need

3-4

Elan™SC520 Microcontroller User’s Manual

System Initialization AMD:'

3.1.5

to explicitly perform a soft restart will simply cause a system reset when a soft reset is
detected.

Note that the watchdog timer can generate an interrupt (maskable or non-maskable) or a
system reset, or both. Handling watchdog timer time-outs can be complex. For more
information on how the WDT operates, see Chapter 19, “Watchdog Timer".

Reset Vector and Reset Segment

Immediately after a hard or soft reset, the Am5,86 CPU core begins execution in real mode
at the address FOOO:FFFO. This real-mode address is called the reset vector. While the
reset vector is a real-mode address, it is a redirection of the physical address FFFFFFFOh,
which is located at the top physical address of the memory device selected by BOOTCS.
This device is called the boot ROM device.

After a hard or soft reset, the 64-Kbyte physical address space from FFFF0000 to
FFFFFFFFh (resident in the boot ROM device) is redirected into real-mode address space
from FO00:0000 to FOOO0:FFFF. This real-mode region is called the reset segment. The
region in the boot ROM device is called the reset region. The code that resides in this area
is called the reset handler.

This redirection is not performed by the addressing unit, but is an artifact of the values
programmed into the CS descriptor cache by the CPU at reset time. After any reset, the
CPU core sets the base value of CS Descriptor Cache register to FFFFO000h with a limit
of 0000FFFFh (64 Kbytes). The processor CS:EIP register pair is set to FO00:0000FFFO.

The redirection works because, in real mode, linear addresses for code fetches are
generated by taking the offset in EIP and adding it to the contents of the base register in
the CS descriptor cache. Since the paging unit is disabled at reset, these linear addresses
map directly to physical addresses.

This simple mechanism causes both the redirection of the reset code region to the reset
segment and the first instruction fetch to occur from the reset vector.

Note that none of the other segment registers (and internal descriptor registers) have this
behavior. This behavior is only applicable to the CS Segment register and its internal
descriptor cache. For more information on the configuration of the processor registers at
reset, see the Am486® DX/DX2 Microprocessor Hardware Reference Manual, 1994 (order
#17965).

What this means is that the artificial reset segment redirection is only active until the CPU
executes a Far Jump (JMP) instruction. This is because a Far Jump instruction causes the
CS Segment register to be reloaded. When a segment register is loaded in real mode, the
processor sets the value of the corresponding descriptor cache base register to 16 times
the new value of the segment register. Since the processor is running in real mode, the
internal CS Descriptor registers are set to their normal real-mode values.

Since the reset vector is at FOO0:FFFO, there are only 16 bytes before the end of the
segment. That is only enough for a few instructions. So, regardless of how much (or how
little) the reset code does, the instruction at the reset vector must be a Near Jump into the
reset region.

For example, as shown in Figure 3-1, if the reset handler is large, then the initial Near Jump
could be to F000:0000.

Elan™SC520 Microcontroller User’s Manual 3-5

AMDﬂ System Initialization

Figure 3-1 Initial Near Jump Example

FOOO:FFFF

FOO0O:FFFO
Reset Vector

Near F000:C000
Jump

Reset
Handler

. F000:0000

The reset vector Near Jump is not required to jump to FO00:0000. It can jump anywhere
into the reset segment. For example, if the reset handler code is only 16 Kbytes in size, it
could jump to FO00:C000, leaving more room on the boot ROM device for other code. This
allows the reset handler to be placed right up against the reset vector, thus using the space
in the boot ROM device more efficiently.

Note: Fordebugging using AMDebug technology, not only should this first Jump instruction
be a Near Jump, it should be a Jump Near Indirect instruction, which is opcode FF/4. In-
circuit emulation and debug software that uses the internal trace cache searches for this
opcode to aid in determining when the reset event occurred.

As much or as little of the system initialization code can take place in the reset handler
while the system is executing from the reset segment (i.e., before the first Far Jump
instruction). For example, a native embedded system using a 32-bit only RTOS will merely
setup the protected mode data structures, switch to protected mode, and jump directly into
system boot code (the boot ROM device is the device selected by BOOTCS).

In contrast, a system with a PC-style BIOS would initialize the SDRAM controller, shadow
the BIOS to SDRAM, and then jump to the BIOS.

3.2 CONFIGURING THE SDRAM CONTROLLER

After a system reset, the SDRAM controller configuration registers are reset to their default
states. All the SDRAM controller banks and SDRAM refresh are disabled by default. For
details on how to enable the SDRAM controller and the SDRAM configuration, see
“Initialization” on page 10-29.

Note that the ElanSC520 microcontroller can be reset in a manner that preserves the
operation of the SDRAM controller. This condition can be detected and handled properly
by the SDRAM initialization code.

If the Error Correction Code (ECC) logic for SDRAM is enabled, ECC operation requires
that SDRAM and its associated ECC memory be initialized. This is accomplished by the
boot code, which must write to every location in SDRAM. This process initializes the ECC
SDRAM to reflect the proper error-checking codes. If this procedure is not performed, false

3-6 Elan™SC520 Microcontroller User’s Manual

System Initialization AMD:'

3.3

errors will occur when writing data smaller than a 32-bit doubleword. For a more detailed
discussion of ECC, see “Error Correction Code (ECC)” on page 10-16.

IDENTIFYING THE CPU CORE

Information about the integrated Am5,86 CPU core is available by reading the processor
DX register after a system reset and by using the CPUID instruction at any time. The CPUID
instruction is available on later model 32-bit processors from all leading x86 vendors and
allows programs to determine information aboutthe CPU, including the manufacturer, cache
type, and availability of a floating point unit (FPU). By using the CPUID instruction, software
can determine the type of CPU running the system. For example, software could detect
that it is running on an Am5,86 CPU and perform the appropriate action.

The ElanSC520 Microcontroller Revision ID (REVID) register (MMCR offset 00h) can be
used to identify the revision of the device itself.

A user-modifiable bit in the CPU’s Flags register called the ID bit indicates support of the
CPUID instruction. The ID bit is reset to 0 at CPU hard or soft reset for compatibility with
existing processor designs.

The results reported by the CPUID instruction reflect the state of the processor at the last
CPU hard or soft reset. If the CPU cache write mode or core clock speed is changed, and
if the CPU encounters a soft reset following the change, then a subsequent CPUID
instruction will report the altered condition of the processor (i.e., the state at the time the
soft reset occurred). After a hard CPU reset, the ElanSC520 microcontroller always reports
the cache mode as write-back and the clock speed as 100 MHz.

The CPUID instruction returns encodings shown in Table 3-1.

Table 3-1

3.4

3.5

CPUID Codes

CPU Clock Speed Write-Back Mode Write-Through Mode

Am5,86 CPU 100 MHz 0494h 0484h

Am5,86 CPU 133 MHz 04F4h 04E4h

SETTING THE CPU SPEED

The ElanSC520 microcontroller is available at multiple clock speeds. By default, the
ElanSC520 microcontroller core comes up from a system reset running at 100 MHz. See
Chapter 7, “Am5x86® CPU", for more information.

Note: Not all ElanSC520 microcontroller devices support all Am5,86 CPU clock rates. The
maximum supported clock rate for a device is indicated by the part number printed on the
package. The clocking circuitry can be programmed to run the device at higher than rated
speeds. However, if an ElanSC520 microcontroller is programmed to run at a higher clock
speed than that for which it is rated, then erroneous operation will result, and physical
damage to the device may occur.

CONFIGURING EXTERNAL GP BUS DEVICES

Programming the ElanSC520 microcontroller to support external peripherals on the GP
bus requires three steps.

1. Program the GP bus timing mechanism to control the bus timings for the device. This is
done first so that the initial access to the device (after the chip selects and PARs are
programmed) will function properly. The GP bus timings and bus cycles are discussed
in “Bus Cycles” on page 13-16.

Elan™SC520 Microcontroller User’s Manual 3-7

AMDZ\

System Initialization

3.6

3.7

2. If needed, program the PIO pin logic to map the GP bus chip select signal and other
control signals to a physical pin.

3. Program a PAR register to map the external peripheral into physical address space and
to configure a chip select for the device.

For peripherals connected externally to the GP bus, the Programmable Address Region
registers control where they are mapped into the 1/0 or memory address space.
Programming and using these registers is discussed in Section 3.7.

CONFIGURING THE PIN MULTIPLEXING

The ElanSC520 microcontroller has several pins that are multiplexed to two functions. There
are no pins that have three functions. Most of the pins that are multiplexed are programmable
input/output pins (PIOs).

To program a pin that is multiplexed with a PIO, its corresponding function bit must be set
in the PIO31-PI1016 Pin Function Select (PIOPFS31_16) register (MMCR offset C22h) or
the PIO15-PIO0 Pin Function Select (PIOPFS15_0) register (MMCR offset C20h).

Other pins with multiple programmable functions are all noted in Figure 2-2 on page 2-3.

CONFIGURING THE PROGRAMMABLE ADDRESS REGION (PAR)
REGISTERS

The PAR registers provide a common programming interface to configure physical memory
and 1/0 regions in an ElanSC520 microcontroller system. PAR registers are programmed
by atomically writing 32-bit values. See “Programmable Address Region (PAR) Registers”
on page 4-5 for more information on using the PAR registers. “Software Considerations”
on page 4-18 provides other important details.

The PAR registers are used to define four characteristics.

m Target device

m Attributes for the address region
m Size of the address region

m Start address for the region

It is important to note that the PAR registers are used to define physical address regions.
PAR registers are not used to define effective address regions or linear address regions.
For example, an effective address (often called a logical or virtual address) gets translated
into a linear address by the Am5,86 CPU’s segmentation unit. If the paging unitis enabled,
then linear addresses get translated into physical addresses and placed on the CPU’s bus.
If the paging unit is not enabled, then the mapping from linear address to physical address
is direct (one-to-one).

Depending on how your system is set up, driver software, system software and other
software that must be aware of physical addresses should be written to take the Am5,86
CPU addressing modes into account. This can be an extremely complex topic and is beyond
the scope of this chapter.

The general format of the PAR registers is shown in Figure 3-2 on page 3-10. Provided as
a programming aid, Figure 3-3 on page 3-11 is a blank worksheet for calculating PAR
register values.

3-8

Elan™SC520 Microcontroller User’s Manual

System Initialization AMD:'

3.7.1

Specifying Pages and Regions

For memory-mapped address regions, the Region Size/Start Address (SZ_ST_ADR) bit
field in the PAR registers specifies the number of 64-Kbyte or 4-Kbyte pages for the region.

Regions using a 64-Kbyte page size can have up to 2048 pages, for a maximum size of
128 Mbytes. Regions using a 4-Kbyte page size can have up to 128 pages, for a maximum
size of 512 Kbytes.

m To specify the number of pages for a region, the value (page count minus 1) is
programmed into the SZ_ST_ADR field of the PAR register.

— For example, to specify a 16-Kbyte region using a 4-Kbyte page size, the value 03h
(0000011b) would be programmed into bits 24—-18 of a PAR register, i.e., one less
than the required number of pages.

— To specify a page count of one, all the bits inthe SZ_ST_ADR field for a PAR register
should be cleared to 0.

— To specify the maximum number of pages, either 2048 or 128, all the bits in the
SZ ST _ADR field should be set to 1.

m To specify the 4-Kbyte page size, the Page Size (PG_SZ) bit should be cleared to 0. For
a 64-Kbyte page size, it should be set to 1.

The same holds true for GP bus I/O-mapped regions. The region size field specifies the
number of bytes in the addressable region. For example, to specify a region size of 8 bytes,
the value 07h (0111b) should be programmed intothe SZ_ST_ADR field of the PAR register.

Note: For GP bus I/O-mapped regions, the PAR registers’ PG_SZ bitis ignored. In general,
it should be cleared to 0 for GP bus I/O regions.

Elan™SC520 Microcontroller User’s Manual 3-9

AMDZ\

System Initialization

Figure 3-2 Programmable Address Region (PAR) Register Format
Programmable Address Region Register
31-29 28-26 25 240
Target of the Attribute Page Size Region Size/Start Address
PAR Window (ATTR) (PG_S2) (SZ_ST_ADR)
(TARGET)
31 | 30 | 29 | Target Device 25 | Memory Page Size
0 0 0 | Window disabled 0 4-Kbyte memory page size on 4-Kbyte
boundary, ignored for 1/0 cycles.
0 0 1 | GPbusl/O
1 64-Kbyte memory page size on 64-Kbyte
0| 1| 0 | GPbusmemory boundary, ignored for I/O cycles.
0 1 1 | PCl bus (applies to
memory cycles to
PAR 0—PAR 1 only) Memory 24-18 17-0 Size defines up to 128
— Cycle - - pages of 4-Kbyte size each,
1|0 | 0 | BOOTCS (ROM) When Region Size Start Address | gp 4-Kbyte boundary, for a
1 0 1 | ROMCSI [25]=0 [6-0] A[29-12] 512-Kbyte maximum window
size.
1 1 0 | ROMCS2 - -
Memory 24-14 13-0 Size defines up to 2K pages
1 1 1 | SDRAM Cycle - - of 64-Kbyte size each on 64-
When Region Size | StartAddress | kpyte boundary, for a 128-
[25]=1 [10-0] A[29-16] Mbyte maximum window
size.
I/O 24-16 15-0 Size defines up to 512 bytes
Cycles - - with byte resolution in 64-
Only Region Size Start Address | kpyte 1/0 space.
[8-0] A[15-0]
If Target is GP bus
If Target is ROM or SDRAM
28 | 27 | 26 | GP Bus Chip Select 28 | 27 | 26 | ROM/SDRAM Attribute
0| O 0 | GPCSO
0 0 1 | GPCs1 0 = Write-enabled region
1 = Write-protected region
0 1 0 | GPCS2
0 1 1 | GPCS3 0 = Cacheable region
1 = Noncacheable region
1 0 0 | GPCs4
— 0 = Code execution permitted
1 0 1 | GPCSS5 1 = Code execution denied
1 1 0 | GPCs6
1 1 1 | GPCS7
3-10 Elan™SC520 Microcontroller User's Manuall

System Initialization AMD:'

Figure 3-3 Programmable Address Region (PAR) Register Worksheet

8 Region Size, 64-Kbyte Pages ‘ Start Address (on 64-Kbyte Boundary)
g::l?f; Attribute g Region Size, 4-Kbyte Page# Start Address (on 4-Kbyte Boundary) Fields
a Region Size, I/0 Bytes I/O Location Base
31/30|29(28|27|26|25|24/23|22|121/2019(18|/17|16/1514/13|12|11|10|/9 | 8 |7 |6 |54 3|2 |1| 0 Bits
Binary
Hex
N Region size, 64-Kbyte Pages Start Address (on 64-Byte Boundary)
g::/?i Attribute g Region Size, 4-Kbyte Page# Start Address (on 4-Kbyte Boundary) Fields
a Region Size, I/0 Bytes I/0O Location Base
31/30|29|28|27|26|25|24|23/22|21/20(19/18/17|16|15(14(|13|121110/9 (|8 |7 |6 |54 |3 |2 /1|0 | Bits
Binary
Hex
N Region size, 64-Kbyte Pages Start Address (on 64-Kbyte Boundary)
gz:"?fé Attribute ‘fg: Region Size, 4-Kbyte Page# Start Address (on 4-Kbyte Boundary) Fields
a Region Size, I/O Bytes I/O Location Base
31/30|29(28|27|26|25|24(23|22|21(2019(18/17|16/1514/13|12|11|10|/9 |8 |7 |6 |54 3|2 |1| 0 Bits
Binary
Hex
S Region size, 64-Kbyte Pages Start Address (on 64-Kbyte Boundary)
g::l?f; Attribute g Region Size, 4-Kbyte Page# Start Address (on 4-Kbyte Boundary) Fields
a Region Size, I/0 Bytes I/0O Location Base
31/30|29|28|27|26(25|24|23/22|21/20(19/18(/17|16|15(14(|13|1211]10|/9 (8 |7 |6 |54 |3 |2 /1|0 | Bits
Binary
Hex

Elan™SC520 Microcontroller User’s Manual 3-11

AMDZ\

System Initialization

3.7.2

3.7.2.1

3.7.2.2

3.7.2.3

3.7.2.4

Address Region Attributes

The address region attributes (as specified in the ATTR bit field of a PAR register) can be
used with ROM or SDRAM regions to control how the regions can be accessed. This section
includes some examples of how the attributes can be used with SDRAM and ROM regions.

Write-Protect Attribute

When this feature is enabled for an address region in SDRAM or ROM, an interrupt is
generated when a write is performed to the region. This interrupt can be used to find
problems with errant software or to help debug Flash programming code.

Cacheability Control Attribute

The Cacheability Control Attribute bit in the PAR registers provides a simple mechanism
for controlling the caching of memory regions. This mechanism is much easier to use than
the Am5,86 CPU’s paging unit.

For SDRAM regions, turning off caching can be useful for regions that contain buffers used
for DMA or for PCI bus mastering devices.

This feature is also useful for Flash regions. For some operations, it is necessary to turn
off caching for a Flash region. An example is when a Flash device needs to be erased or
programmed. Any time a Flash device’s internal registers need to be read or written, caching
should be disabled for the device. For example, the Flash sector erasing code needs to poll
the device to see when erases and other operations are complete. If caching is not turned
off, then the software will merely continue to read the value from the processor’s cache and
not the correct value from the device. This is also true during the Flash programming write/
verify cycle. For more information, see page 12-12.

Code Execution Attribute

Execution control works in a similar manner to the Write-Protect Attribute bit. The difference
is that when this bit is set, any code fetches by the CPU to the defined region will cause an
invalid opcode fetch fault to be generated. This is accomplished by returning an invalid
opcode to the CPU, instead of the data resident in the device at the requested address.

This is very useful for debugging problems. Large areas of the address space can be
execute-protected. For example, the Flash for a file system could be protected from code
execution. Data reads and writes for the Flash file system would happen normally. But, if
a code erroneously jumped into this data area, an invalid opcode fetch fault would be
generated immediately.

Performance Considerations

It is possible to control the same attributes that the PAR registers provide using the native
mechanisms in the Am5,86 CPU core. For example, 4-Kbyte pages can be write-protected
using the paging unit and paging tables. Noncached regions can also be created using this
mechanism. Execution protection can also be performed using a segmented code model
and descriptor attributes.

Using the native x86 mechanisms will work, but using the address region attributes in a
PAR register is easier and provides higher performance. If the CPU’s paging unitis enabled,
the entire system takes a small performance hit because all linear address must be
translated to physical address. Also, defining nonexecutable regions is very difficult to do
and requires 48-bit code pointers (huge pointers) and a fully segmented 32-bit code model.
This is a high price to pay to obtain execute-only regions. These performance penalties are
not incurred when using the ElanSC520 microcontroller’s address region attribute
mechanism.

3-12

Elan™SC520 Microcontroller User’s Manual

System Initialization AMD:'

3.7.3

3.7.4

PAR Register Priority

The PAR register mechanism is a very flexible and useful one. It is designed to allow the
system programmer to easily program the address decoding and set attributes for
addressable regions. One feature of the PAR register system that may not be obvious from
the examples included in this chapter is that the PAR registers have a priority mechanism.
The highest priority PAR register is PAR 0 and the lowest priority register is PAR 15. This
feature is not relevant unless two (or more) PAR regions overlap. If they do overlap, then
the higher priority PAR register takes precedence.

The PAR registers are used to modify and add to the default system addressing (see
Table 4-4 on page 4-4). Note that the system can function quite well with all of the PAR
registers disabled. For example, a system could start-up, use a PAR register to copy the
contents of Flash to SDRAM?, jump to the code in SDRAM, and then disable the PAR
register used for the copy. With all the PAR registers disabled, the normal address resolution
priorities in the system govern addressing of physical devices.

External GP Bus Devices

Devices on the GP bus can be addressed in two ways. Each is controlled by programming
the PAR registers.

m By chip select, mapping the device into memory or I/O space
m Devices can do their own memory or I/O address decoding.

Programming a PAR register with the GP bus as the target is required to cause memory or
I/0 cycles to be forwarded to the external GP bus. This is true for devices that use chip
selects and devices that decode their own address (generate their own chip selects).
Programming a PAR register is necessary because, by default, memory and 1/O cycles
generated by the Am5,86 CPU that are not decoded by an internal GP bus peripheral or
memory resources (like SDRAM, ROM, and the MMCR registers) go to the PCI bus.

For a device on the external GP bus, programming a PAR register configures the following
characteristics:

m Target device field—For either a GP bus memory-mapped cycle or an I/O cycle
m Attribute field—For the particular GP bus chip select to which the device is attached

m Memory page size field— Most peripherals use a 4-Kbyte granularity. Peripherals that
have very large memory address spaces, such as SDRAM or ROM, might need to use
a 64-Kbyte granularity.

m Region size and start address

For a device that requires a chip select from the ElanSC520 microcontroller, the chip select
must be mapped to a physical pin using the PIO registers. For devices that do their own
address decoding, the PAR register must still be programmed, and the chip select should
be chosen; however, the chip select from the PAR register does not need to be mapped to
a physical pin.

Note: All of the internal peripherals on the GP bus are decoded at fixed locations. The
locations for these peripherals cannot be changed by programming a PAR register. For
example, the internal real-time clock cannot be moved to a different location. No PAR
registers are required to access any of the internal peripheral devices on the ElanSC520
microcontroller.

1. This is one way to shadow a BIOS to DRAM.

Elan™SC520 Microcontroller User’s Manual 3-13

AMDZ\

System Initialization

3.7.4.1 Single Device (an A/D Converter) Using One Chip Select
In this example, an A/D converter has four 16-bit registers that need to be mapped into
I/O space on GPCSS5 at I/0O address 0500h. As shown in Table 3-2, the value to program
into a PAR register in this case is 34070500h.
Table 3-2 Example PAR Programming: Single Device Using One Chip Select
Bit Field Value Meaning
Target Device 001b GP bus I/O space
Attribute Field 101b GPCS5
Page Size Ob Clear to 0 (this bit not applicable to /0O space)
Region Size 7h Specifies an 8-byte region size
Start Address 0500h Physical address 0500h
3.7.4.2 Single Device That Performs Its Own Decode
In this example, an external memory-mapped 16-color 480 x 320 pixel LCD controller
performs its own address decoding. It needs a 128-Kbyte window mapped at 000C0000h.
A chip select must be used (specified in the ATTR bit field of the PAR register), but it does
not need to be mapped to an external pin. GPCS7 is used here. As shown in Table 3-3, the
value to program into a PAR register in this case is 5SE00400Ch.
Table 3-3 Example PAR Programming: Single Device That Performs Its Own Decode
Bit Field Value Meaning
Target Device 010b GP bus memory space
Attribute Field 111b GPCS7
Page Size 1b 64-Kbyte granularity
Region Size 1h Specifies two 64-Kbyte pages for a 128-Kbyte region size
Start Address 000Ch Physical address 000C0000h
3.7.4.3 Multiple Devices On One Chip Select
A single PAR register can be programmed for a larger range than is needed by a single
peripheral. For example, consider a bank of 16 memory-mapped A/D converters, each of
which has four 16-bit registers. An external PAL is programmed to do the address decoding
for each individual A/D converter. The converters will be memory-mapped to a range of
00020000—-0002003Fh. The PAL generates the chip selects for each of the four converters
by watching for the appropriate memory read and write cycles and is qualified from GPCS2
from the ElanSC520 microcontroller. As shown in Table 3-4, the value to program into a
PAR register in this case is 48000020h.
Table 3-4 Example PAR Programming: Multiple Devices on One Chip Select
Bit Field Value Meaning
Target Device 010b GP bus memory space
Attribute Field 010b GPCS2
Page Size 0b 4-Kbyte granularity
Region Size Oh One 4-Kbyte page
Start Address 20h Physical address 00020000h
3-14 Elan™SC520 Microcontroller User's Manual

System Initialization AMD:'

3.7.5

3.7.5.1

PCI Bus Devices

Normally, devices on the PCI bus are mapped into memory space that is above the
configured amount of DRAM and just under 4 Gbytes (FFFEFFFFh). The ElanSC520
microcontroller’'s address decode logic forwards all access to these memory locations to
the PCI bus.

Normally, memory cycles below the top address used by SDRAM are forwarded only to the
SDRAM controller, orto the GP bus if a PAR register is appropriately programmed. However,
for Windows and DOS compatibility, some PCI peripherals need to be mapped into SDRAM
space. These regions usually fall below the real-mode address limit (physical address
0010FFEFh). Devices that can require this include PCl-based VGA video cards and PCI-
based network adapters. To allow this, the first two PAR registers support the PCI bus as
a target. Note PCI as a target can only be specified in PAR 0 and PAR 1.

For such devices, a PAR register must be programmed that allows addresses lower than
the highest SDRAM address to be forwarded to the PCI bus. This is in addition to the normal
PCI bus device configuration. The VGA controller example in Section 3.7.5.1 illustrates this.

Typically, all I/O space accesses above the 1-Kbyte boundary are forwarded to the PCI bus,
and all I/O space accesses below the 1-Kbyte boundary are forwarded to the GP bus.

m With some minor exceptions for the CBAR and PCI configuration registers, the I/O space
above the 1-Kbyte boundary can be redirected from the PCI to the GP bus using PAR
registers.

m ThelO_HOLE_DEST bitinthe Address Decode Control (ADDDECCTL) register (MMCR
offset 80h) can be programmed to allow all I/O space addresses below the 1-Kbyte
boundary that are not assigned to internal peripherals to be forwarded to the PCI bus.

m Note that PAR registers can still be mapped in the lower 1-Kbyte 1/0O space to override
the I0O_HOLE_DEST bit. This way, I/O devices in the lower 1-Kbyte space can reside
internally to the ElanSC520 microcontroller, on the external GP-Bus, and on the PClI bus.

VGA Controller on the PCI Bus

A VGA video controller's 128 Khytes of memory is hormally mapped from 000A0000—
000BFFFFh (physical addresses). So, to support a PCl-based video controller, PAR 0 or
PAR 1 would need to be programmed to 7200400Ah. This configures PAR 0 or PAR 1 with
the characteristics shown in Table 3-5. The attribute fields are ignored for the PCI bus target.
PCI regions are always writable, executable, and noncached.

Table 3-5

Example PAR Programming: VGA Controller on the PCI Bus

Bit Field Value Meaning

Target Device 011b PCI bus

Attribute Field 000b Not applicable

Page Size 1b 64-Kbyte granularity

Region Size 1h Specifies two 64-Kbyte pages for a 128-Kbyte region size
Start Address Ah Physical address 000A0000h

A PCI VGA video adapter also requires PCI I/O from addresses 03B0—-03BBh and 03CO-
03CFh. A PAR register is not required to map these I/O locations to PCI space, but instead
the I0O_HOLES_DEST bit must be set in the Address Decode Control (ADDDECCTL)

register (MMCR offset 80h). This has the effect of mapping all external I/O accesses to PCI
space rather than to the GP bus. If there are no external GP bus I/O devices, then no further

Elan™SC520 Microcontroller User’s Manual 3-15

AMDZ\

System Initialization

PAR programming is required to support this configuration. Note that the internal I/O devices
will still be correctly accessed when the I0_HOLES_DEST bit is set.

However, if any external GP bus device requires I/O addresses, then a PAR register will be
required to allow access to this device. As an example, assume an external 16550 UART
is used to implement a COM3 port.

The standard I/O locations for COM3 are 03E8—03EFh. As shown in Table 3-6, a PAR
register will be required with a setting of 340703E8hto enable external GP bus accesses
to this I/O range. In this example, GPCS5 is used as a chip enable for the external device.
If another GPCSx s required, then appropriate changes should be made to the PAR register
setting.

Table 3-6

3.7.5.2

Example PAR Programming: COM3 with VGA Present on the PCI Bus

Bit Field Value Meaning

Target Device 001b GP bus I/O space

Attribute Field 101b GPCS5

Page Size Ob Clear to O (this bit not applicable to /0O space)

Region Size 7h Specifies an 8-byte region size

Start Address 03E8h Physical address 03E8h

Network Adapter for Remote Program Loading

A memory-mapped network adapter will usually reside in PCI space that is far above the
real-mode address limit. However, to perform Remote Program Loading (RPL), often called
network boot, over a network, the 16-bit BIOS needs to use the network adapter. To avoid
writing 32-bit protected-mode BIOS code, PAR 0 or PAR 1 can be used to place a memory-
mapped network adapter above the real-mode address limit. For this example, itis assumed
that the network adapter has 16 Kbytes of address space that needs to be placed at
000B000O0N. This area is noncacheable because it is PCl address space. As shown in
Table 3-7, the value to configure PAR 0 or PAR 1 for this configuration is 600C00BOh.

Table 3-7

Example PAR Programming: Network Adapter for Remote Program Loading

Bit Field Value Meaning

Target Device 011b PCI bus

Attribute Field 000b Not applicable

Page Size 0b 4-Kbyte granularity

Region Size 03h Specifies four 4-Kbyte pages for a 16-Kbyte region size

Start Address BOh Physical address 000B0000h

Note that most network adapters will also require a small amount of PCI I/O space. The
location of this I/0O space can usually be changed through a PCI configuration register on
the adapter and can be assigned by an operating system through plug and play functionality.
Usually, this address can be setto any value and is typically above the 1-Kbyte I/O boundary
affected by the IO_HOLES_DEST bit. Since I/0 accesses above 400h are always sent to
PCl space (unless overridden by a PAR register to go to the GP bus), no special programming
is needed to allow I/O accesses for a typical PCI network adapter.

3-16

Elan™SC520 Microcontroller User’s Manual

System Initialization AMD:'

3.7.6

3.7.6.1

External ROM Devices

The PAR registers can also be used to define the addressing for ROM devices selected by
BOOTCS, ROMCS1, and ROMCS2. ROM devices include true ROMs, EEPROM, Flash
devices, and other similar devices.

It is important to note that the top 64 Kbytes of the ROM device selected by BOOTCS (the
boot device chip select) is always mapped to the physical addresses from FFFFO000—
FFFFFFFFh. This area is called the reset region. The reset region is cached, executable,
and not write-protected. This 64-Kbyte mapping is fixed and always active, even if the boot
ROM device is mapped to another address using a PAR register. ROM devices attached
to BOOTCS, ROMCS1, or ROMCS2 can be mapped anywhere in physical address space
below 40000000h (1 Ghyte).

Boot ROM Device Mapping for BIOS Shadowing

A 512-Kbyte Flash device is a common boot ROM device for systems with a BIOS. One
way to shadow the BIOS is to map it below 00100000h so that it can be accessed by real-
mode code. This is easily done with a single PAR register. For shadowing purposes, a good
place to park the boot ROM device is at 00001000h, which is just above the interrupt vector
table. The value 89FC0001h configures the PAR register as shown in Table 3-8.

Table 3-8

3.7.6.2

Example PAR Programming: Boot ROM Device Mapping for BIOS Shadowing

Bit Field Value Meaning

Target Device 100b BOOTCS

Attribute Field 010b Write enable, noncacheable, code execution permitted
Page Size 0Ob 4-Kbyte granularity

Region Size 7Fh Specifies 128 4-Kbyte pages for a 512-Kbyte region size

Start Address 1h Physical address 00001000h

Two Banks of Flash for an Execute-In-Place (XIP) Operating System

A system has eight 8-Mbit byte-wide Flash devices. Four are on ROMCS1 and four on
ROMCS2. These devices will be mapped into eight Mbytes of contiguous 32-bit address
space from 00400000—-00BFFFFFh. This requires two PAR registers because two ROM
chip selects need to be used. This example uses PAR 4 and PAR 5. Note that in addition
to programming the PAR registers, the ROM chip selects need to be mapped to physical
pins.

The value A20FC040h for PAR 4 would setup ROMCS1 for the first bank of Flash. This
configures the PAR register with the characteristics shown in Table 3-9. The value
C20FC080h for PAR 5 would setup ROMCS?2 for the first bank of Flash. This configures
the PAR register with the characteristics shown in Table 3-10.

Table 3-9

Example PAR Programming: First Bank of Flash for XIP Operating System

Bit Field Value Meaning

Target Device 101b ROMCS1

Attribute Field 000b Write enable, cacheable, code execution allowed

Page Size 1b 64-Kbyte granularity

Region Size 3Fh Specifies sixty-four 64-Kbyte pages for a 4-Mbyte region size
Start Address 40h Physical address 00400000h

Elan™SC520 Microcontroller User’s Manual 3-17

AMDﬂ System Initialization

Table 3-10 Example PAR Programming: Second Bank of Flash for XIP Operating System

Bit Field Value Meaning
Target Device 110b ROMCS2
Attribute Field 000b Write enable, cacheable, code execution allowed
Page Size 1b 64-Kbyte granularity
Region Size 3Fh Specifies sixty-four 64-Kbyte pages for a 4-Mbyte region size
Start Address 80h Physical address 00800000h
3.7.7 SDRAM Regions

The PAR registers can also be used to define regions of SDRAM and control the read/write,
cacheability, and execution attributes.

3.7.7.1 Setting Up DMA Buffers

Often PCI and GP bus devices use GP-DMA or PCI bus mastering to read and write data
directly from buffers in SDRAM. It is often useful to mark such buffers as noncached. This
can be done using the CPU’s paging unit, but doing so is complex and may conflict with
how an operating system uses the page tables.

In any case, disabling caching for a region is quite simple. Setting the Cacheability Control
Attribute (bit 27) in a PAR register defines a buffer region. For example, a 512-Kbyte region
can be defined to store transmit and receive buffers for a fast Ethernet PCI controller. Since
this is a data-only area, the Code Execution Attribute (bit 28) is set.

Assuming that the region is located at physical address 00020000h, a PAR register would
be programmed with the value FOFC0020h. This configures the PAR register with the
characteristics shown in Table 3-11.

Table 3-11 Example PAR Programming: Setting Up DMA Buffers

Bit Field Value Meaning

Target Device 111b SDRAM

Attribute Field 110b Write enable, noncacheable, code execution denied
Page Size 0b 4-Kbyte granularity

Region Size 7Fh Specifies 128 4-Kbyte pages for a 512-Kbyte region size
Start Address 20h Physical address 00200000h

Of course, this is not absolutely necessary. The cache controller in the ElanSC520
microcontroller always maintains the coherency between the cache and SDRAM. For buffer
regions used by GP-DMA channels or PCI bus masters, disabling caching with a PAR
register is more efficient and provides better bus performance than allowing the CPU to
cache the buffer. This avoids the bus activity (and latency) involved with keeping the cache
and the SDRAM coherent.

3.7.7.2 Write-Protected Code Segments

In many embedded systems, all (or most) of the applications and operating system code
is contiguous in memory. In such cases, a single PAR register can be used to write-protect
most (or all) of the code in a system. If errant code attempted to write to the protected
region, then an interrupt would be generated. Note that the CPU completes the write cycle,
but the SDRAM or ROM controller (as appropriate) prevents the write from occurring at the
device.

3-18 Elan™SC520 Microcontroller User’s Manual

System Initialization AMD:'

Several actions could be taken, from merely preventing the write from taking place, to killing
the offending thread, or even restarting the system. Also, the event could be recorded and/
or reported to a debugging or diagnostic interface or console port. During debugging, a
breakpoint could be set at the front of the write-protect interrupt service routine.

Assuming the system code resides in the first 768 Kbytes of SDRAM at address 0, the
value E602C000h configures a PAR register with the values shown in Table 3-12.

Table 3-12

3.8

3.8.1

3.8.2

Example PAR Programming: Write-Protected Code Segments

Bit Field Value Meaning

Target Device 111b SDRAM

Attribute Field 001b Write disable, cacheable, code execution permitted

Page Size 1b 64-Kbyte granularity

Region Size Bh Specifies twelve 64-Kbyte pages for a 768-Kbyte region size
Start Address Oh Physical address 00000000h

CONFIGURING THE INTERRUPT MAPPING

The ElanSC520 microcontroller has very flexible interrupt routing and control capability.
Each of the hardware interrupt sources can be mapped to any of the different interrupt
priority levels in the programmable interrupt controller (PIC).

In contrast to a basic PC, which has fixed interrupt mappings and operation, the ElanSC520
microcontroller has a very flexible interrupt management architecture. For full details on
this system, see Chapter 15, “Programmable Interrupt Controller”. The information in
“Interrupt Sources” on page 15-8 is of particular importance.

The following sections discuss options to be considered for the software that configures
interrupts.

Edge-Sensitive or Level-Triggered Interrupts

Edge- and level-triggering can be programmed for each PIC or on an interrupt-by-interrupt
basis.

For example, all of the interrupts on the Slave 2 interrupt controller could be programmed
for edge-triggered operation.

m Setting the S2_GINT_MODE bitin the Interrupt Control (PICICR) register (MMCR offset
DOOh) allows the LTIM bit in the Slave 2 PIC Initialization Control Word 1 (S2PICICW1)
register (Port 0024h) to control how interrupts are triggered for that controller.

m [fthe S2_GINT_MODE bitis cleared, then the edge- or level-triggered nature is controlled
for each interrupt input to the PIC individually using the Slave 2 PIC Interrupt Mode
(SL2PICMODE) register (MMCR offset D04h).

Interrupt Mapping

Using the Interrupt Mapping registers, each interrupt source can be mapped to one of the
interrupt channels in the PIC block, the NMI interrupt, or can be disabled as an interrupt
input. The flexibility of the ElanSC520 microcontroller allows any interrupt source in the
system to trigger either a regular interrupt or an NMI.

Elan™SC520 Microcontroller User’s Manual 3-19

AMDZ\

System Initialization

3.8.3

3.9

3.10

Interrupt Polarity

Each of the interrupt controllers can recognize either a Low-to-High edge-triggered or an
active High level-sensitive interrupt request. To support external devices that generate
active Low interrupt requests (either edge or level), a programmable inversion of each of
the external interrupt requests is available.

Many devices generate a Low-going interrupt signal using an open-collector output. These
devices are easily supported on the ElanSC520 microcontroller by setting the appropriate
bit in the Interrupt Pin Polarity (INTPINPOL) register (MMCR offset D10h). For example, if
such a device were connected to GPIRQ8, then setting GPINT8_POL in the Interrupt Pin
Polarity (INTPINPOL) register would program the interrupt for a Low-going interrupt input.

It is important to ensure that the polarity values for all internal interrupt sources are
programmed correctly at reset time.

CONFIGURING THE PROGRAMMABLE 1/0O PINS

An important part of the ElanSC520 microcontroller initialization is configuration of the
programmable I/O (P10O) pins. These are general-purpose I/O pins that can be programmed
as inputs or outputs. When configured as an input, the state of the input can be read using
the PIOx_DATA bit in the PIOx Data register.

The PIO pins can also be configured as outputs by setting their corresponding direction
bits in the PIOx Direction registers.

CONFIGURING THE PCI HOST BRIDGE AND ARBITRATION

The PCI Host Bridge must be configured and initialized before PCI operation such as
enumeration and device configuration take place. There are two parts to the PCI host bridge
configuration: ElanSC520 microcontroller-specific configuration and normal PCI bus
configuration.

1. Configure the PCI host bridge.

a.Program the desired ElanSC520 microcontroller arbitration mode, including
concurrency mode and PCI bus master arbitration priorities, etc. See “Initialization”
on page 8-22, for more detailed information on arbitration.

b. Program the Programmable Address Region (PAR) registers, if required. If there are
one or two VGA video controllers, PAR 0 and PAR 1 may need to be programmed to
place the VGA graphics memory in SDRAM space at PC-compatible locations. PAR
0 and PAR 1 could also be used for other PCI peripherals (such as a network card)
that require mapping below physical address 00100000h. See Chapter 4, “System
Address Mapping”, for details on programming PCI bus memory space.

c. Program the ElanSC520 microcontroller-specific PCI host bridge configuration (write
posting, retry time-out counter, interrupts, etc.). Note that write-posting must be
disabled while operating in nonconcurrent arbitration mode. See Chapter 8, “System
Arbitration”, for further details on nonconcurrent mode arbitration.

d. Program the standard PCI bus configuration registers. See “Configuration Information”
on page 9-9 for more information.

2. Configure the external PCI bus devices.

In general, PCI host bridge configuration bits should not be changed except during a PCI
bus initialization after a system or programmable reset.

3-20

Elan™SC520 Microcontroller User’s Manual

System Initialization AMD:'

3.11

DISABLING INTERNAL PERIPHERALS

Most applications will use the ElanSC520 microcontroller’s internal UART devices and its
internal real-time clock (RTC). However, some applications might need to use external
devices mapped to these same I/O locations. To use external devices, the corresponding
internal device must be disabled. This is necessary because these internal peripherals are
at fixed I/0O locations and cannot be re-mapped. If any internal devices are disabled,
accesses to the I/O addresses for these peripherals are forwarded to the external GP bus.

Disabling these peripherals turns off their address decoding, so that externally connected
peripherals can be used in their place. If the addresses cannot be externally decoded
without a chip select, a PAR register must be mapped to allow a chip select to be asserted
for these addresses.

Using external devices in place of the internal ones might be necessary for several reasons.
A common reason would be to use a multifunction external chip that has parallel ports,
serial ports, floppy disk controller, an RTC, and other devices.

m The internal RTC can be disabled by setting the RTC_DIS bit in the Address Decode
Control (ADDDECCTL) register (MMCR offset 80h).

m UART 1 and UART 2 can be disabled by setting the UART1_DIS and UART2_DIS bits
in the Address Decode Control (ADDDECCTL) register.

Note that, if the internal peripherals are disabled, the external peripheral’s interrupt signals
will need to be connected to external interrupt lines, which then need to be routed to the
appropriate interrupt channel. For example, if an external UART is used to replace UART
2 (as COM2), then its interrupt could be connected to GPIRQ8, which would then need to
be routed to interrupt priority P3.

Also, in this scenario, the pin used for GPIRQ8 would need to be configured as a general-
purpose IRQ (the interface function for the pin, not its default P1O function) by setting the
P1015 FNC bit in the PIO15-PIO0 Pin Function Select (PIOPFS15 0) register (MMCR
offset C20h).

Note: When the internal peripherals are disabled, they are still fully functional. Disabling
the peripherals disables the address decoding only for that device. For example, if the RTC
is programmed to generate interrupts and then subsequently disabled, it will continue to
generate interrupts but will no longer be accessible. Before disabling an internal peripheral,
be sure to turn off its interrupts.

Elan™SC520 Microcontroller User’s Manual 3-21

AMDﬂ System Initialization

3-22 Elan™SC520 Microcontroller User’s Manual

4 SYSTEM ADDRESS MAPPING

AMDA

4.1 OVERVIEW

The ElanSC520 microcontroller includes flexible memory and /O address decoding with
features for both real-time operating systems (RTOS) and systems requiring PC/AT
functionality for Windows compatibility. Address decoding is distributed between the
memory controllers, GP bus controller, and PCI host bridge controller. The ElanSC520
microcontroller provides the following memory and I/O address mapping options.

m The default SDRAM map is linear space starting at 00000000h through the top of

SDRAM (defined by the total size of the SDRAM array, up to a maximum of 256 Mbytes).

The default boot ROM/Flash chip select (BOOTCS pin) is mapped in a 64-Kbyte linear
region at the top of CPU memory space from FFFFO000-FFFFFFFFh, and this entire
ROM space can be redirected through configuration registers (address translation is not
supported).

All configuration registers that do not reside in PC/AT 1/O space or PCI configuration
space are memory-mapped and are located in a 4-Kbyte region in memory address
space from FFFEFO00-FFFEFFFFh.

— This 4-Kbyte region is called the memory-mapped configuration region (MMCR).

— The MMCR can optionally be relocated on any 4-Kbyte boundary in the lower 1-Gbyte
region via an I/O mapped register called the Configuration Base Address (CBAR)
register (Port FFFCh).

— The default MMCR region in high memory (below the boot space) is visible even if it
is aliased via the Configuration Base Address (CBAR) register.

The default PCI bus map is contiguous space starting directly above the top of SDRAM
through 4 Ghytes, minus the 68 Kbytes for the boot ROM/Flash region and the MMCR.

16 general-purpose Programmable Address Region (PAR) windows allow address
mapping for a variety of applications, including operating systems requiring x86 real
mode support. Each window allows any memory region in the lower 1-Gbyte region to
be directed to the following resources:

— Any of three ROM chip-selects with the ability to apply cacheability, write-protection,
and nonexecutable region attributes

— Any of eight GP bus chip-selects for external memory or I/O peripherals on the GP bus

— Two PAR registers allow cycles to be forwarded to the PCI bus for applications that
require PCI space to be overlaid on top of SDRAM. All accesses above the top of
SDRAM to the top of 32-bit memory space are automatically forwarded to PCI bus
(with the exception of the ROM boot space and memory-mapped configuration space).

— Accessesinnormal SDRAM space (lower 256 Mbytes) can also be redirected to ROM,
the GP bus, or the PCI bus.

— PAR windows can be created in the SDRAM region to allow noncacheable, write-
protected, and/or nonexecutable buffers.

Elan™SC520 Microcontroller User’s Manual 4-1

AMDZ\

System Address Mapping

m Integrated PC/AT compatible peripherals are direct-mapped in normal PC I/O space
(i.e., the programmable interrupt controller, programmable interval timer, GP bus DMA
controller, RTC, and UARTS). All remaining integrated peripherals are memory-mapped

(the watchdog timer, software timer, GP timers, and SSI).

m As a PCl target, the PCI bus host bridge decodes normal SDRAM address space,
allowing external PCI bus master access of the entire SDRAM space. PCI bus 1/O

accesses from PCI masters are not decoded by the PCI host bridge.

4.2 REGISTERS
Address decoding is controlled by the configuration registers listed in Table 4-1 and
Table 4-2.
Table 4-1 Address Decoding Registers—Memory-Mapped
MMCR
Offset
Register Mnemonic Address | Function
Address Decode Control ADDDECCTL | 80h RTCdisable, UART 1 and UART 2 disables, write
protect violation interrupt enable, 1/0 hole
access destination
Write-Protect Violation Status WPVSTA 82h Write-protect violation interrupt status, master,
window number
Programmable Address Region 0 | PARO 88h General-purpose resource decoding
Programmable Address Region 1 | PAR1 8Ch General-purpose resource decoding
Programmable Address Region 2 | PAR2 90h General-purpose resource decoding
Programmable Address Region 3 | PAR3 94h General-purpose resource decoding
Programmable Address Region 4 | PAR4 98h General-purpose resource decoding
Programmable Address Region 5 | PARS 9Ch General-purpose resource decoding
Programmable Address Region 6 | PAR6 AOh General-purpose resource decoding
Programmable Address Region 7 | PAR7Y Adh General-purpose resource decoding
Programmable Address Region 8 | PAR8 A8h General-purpose resource decoding
Programmable Address Region 9 | PAR9 ACh General-purpose resource decoding
Programmable Address Region 10 | PAR10 BOh General-purpose resource decoding
Programmable Address Region 11 | PAR11 B4h General-purpose resource decoding
Programmable Address Region 12 | PAR12 B8h General-purpose resource decoding
Programmable Address Region 13 | PAR13 BCh General-purpose resource decoding
Programmable Address Region 14 | PAR14 COh General-purpose resource decoding
Programmable Address Region 15 | PAR15 C4h General-purpose resource decoding
Table 4-2 Address Decoding Registers—Direct-Mapped
11O
Register Mnemonic Address | Function
Configuration Base Address CBAR FFFCh Base address for the alias of the MMCR

registers

4-2

Elan™SC520 Microcontroller User’s Manual

System Address Mapping AMD:'

4.3 OPERATION

There are three types of system bus masters supported on the ElanSC520 microcontroller:
the Am5,86 CPU, the PCI bus, and the GP bus DMA controller.

As shown in Table 4-3, each of the three bus masters can access specific types of address
space.

m The Am5,86 CPU and the PCI bus each implement separate memory and I/O address
space.

m The PCI bus further specifies a separate space for device configuration registers.

m The GP bus DMA controller supports fly-by transfers between GP bus devices and
SDRAM,; therefore, as a bus master, it supports memory space only.

Table 4-3 Bus Master Address Spaces

Integrated Integrated Memory-
Bus Master and GP PCI PC/AT Non-PC/AT Mapped CBAR
Address Space SDRAM | ROM | Bus | Bus | Peripherals | Peripherals | Registers | Register
CPU | Memory 0 0 0 0 O 0
I/O O O O O
PCl | Memory g g
Bus |10 0
Configuration®
GP- | Memory g
DMA
Notes:

1. Accessed indirectly by the CPU via the PCI configuration registers in I/O space.

The Am5,86 CPU and PCI bus definition support separate memory and I/O address spaces
(I/0 space is limited to 64 Kbytes on the CPU). The PCI Local Bus Specification, Revision
2.2, further defines a separate space for configuration registers.

The ElanSC520 microcontroller divides these address spaces as follows:

m Memory space

— ROM/Flash space for data and code storage using up to three chip selects (accessible
only by the CPU)

— SDRAM space for data and code storage
— GP bus memory space (accessible only by the CPU)
— PCI bus memory space (accessible only by the CPU and PCI bus masters)

— Internal memory-mapped configuration region (MMCR) registers (accessible only by
the CPU)

m |/O space
— Integrated PC/AT-compatible peripherals (accessible only by the CPU)

— Configuration Base Address (CBAR) register (Port FFFCh) to set the MMCR's base
address (accessible only by the CPU)

Elan™SC520 Microcontroller User’s Manual 4-3

AMDZ\

System Address Mapping

— GP bus I/0 space (accessible only by the CPU)

— PCI bus I/O space (accessible by the CPU and PCI masters)

— PCI bus configuration space (accessible only by the CPU)

Table 4-4 summarizes the organization of memory and I/O address regions in the
ElanSC520 microcontroller.

Table 4-4 Memory and 1/O0 Space Summary
Device Memory Space I/O Space
SDRAM » Linearspace startingat00000000htotop | N/A
of SDRAM (maximum 256 Mbytes)
* PAR registers define noncacheable,
write-protected, nonexecutable regions
ROM/Flash « BOOTCS mapped to CPU boot space N/A

from FFFFO000-FFFFFFFFh
(64 Kbytes)

* PAR registers define noncacheable,

write-protected, nonexecutable regions

PCI Bus Normal Space

» Default above SDRAM to top of memory

address space (4 Gbytes), minus boot
space (64 Kbytes) and MMCR (4 Kbytes)

» Two PAR registers can define any region

that overlays SDRAM space

Any space not claimed by CBAR, PC/AT
peripherals, GP bus (via PAR registers),
or PCI configuration registers (0CF8—
O0CFFh)

PCI Bus Configuration
Space

N/A

OCF8-0CFFh

GP Bus

Defined via PAR registers in lower 1 Ghyte

Defined via PAR registers in lower 64
Kbytes, exceptforintegrated peripherals’
I/O space

Integrated PC/AT
Peripherals

N/A

0000h-03FFh

Address (CBAR) Register

MMCR Registers » Defaults to 4-Kbyte region starting at N/A
FFFEFOOOh
* CBAR can alias this to any 4-Kbyte
boundary in lower 1 Gbyte
Configuration Base N/A FFFC—FFFFh

4.3.1

Programming External Memory, Buses, and Chip Selects

Programming the external memory, buses, and chip selects on the ElanSC520
microcontroller is accomplished in three steps:

1. Configure the address space and any required attributes for the specified region.

2. Configure the timing, when applicable, and any required attributes of the interface.

3. For chip selects, enable the function on the desired pin by programming the pin
multiplexing in the PIO registers.

This chapter describes how to complete step 1. Programming the required timing and

attributes of the external interface (i.e., SDRAM, ROM, GP bus, or PCI bus) is accomplished
by writing to registers that control these interfaces. Finally, for chip selects, see Chapter 23,

4-4

Elan™SC520 Microcontroller User’s Manual

System Address Mapping AMD:'

4.3.2

“Programmable Input/Output”, which describes enabling the actual programmable I/O (P10)
pins that can be shared with other functions.

Programmable Address Region (PAR) Registers

Programmable Address Region (PAR) registers provide a common programming interface
to configure memory space and I/O space regions in an ElanSC520 microcontroller system.
As referenced in Table 4-4, the PAR registers are primarily used to define the address
regions of ROM and GP bus, as well as to set attributes for ROM and SDRAM regions.

The firsttwo PAR registers (PAR 0 and PAR 1) also allow the user to redirect CPU accesses
that normally fall into SDRAM space to the PCI bus, for special cases that require this
functionality. The ElanSC520 microcontroller provides a total of 16 PAR registers to provide
the user with flexibility in organizing memory space and I/O space in the system. They are
organized in a priority scheme starting with the lowest register (PAR 0). Thus, if overlapping
regions are programmed, the lowest number PAR register takes priority. The PAR registers
are 32 bits each and reside in the MMCR space.

Since the ElanSC520 microcontroller supports PC/AT-compatible peripherals, the regions
required for these peripherals are fixed in I/O space and are not relocatable via PAR
registers. This includes the GP bus DMA controller, the programmable interval timer (PIT),
the programmable interrupt controller (PIC), the two 16550-compatible UARTS, the real-
time clock (RTC), and the PC/AT port logic.

Figure 4-1 illustrates the layout of the 32-bit PAR register. Note that the registers are
organized in four sections, as follows:

m The Target (TARGET) bit field defines the destination of the cycle (i.e., ROM, GP bus,
etc.).

m The Attribute (ATTR) bit field allows memory regions to be programmed with special
conditions such as write-protection and noncacheability for ROM or SDRAM access or
selects a specific chip select for GP bus accesses.

m The Page Size (PG_SZ) bit defines the size of each memory page within the regions.

m The Region Size/Start Address (SZ_ST_ADR) bit field is used to define both the
beginning of the region and the total size of the region (in conjunction with the Page Size
bit).

The PAR register is used to define only the actual address space for the targets; it does
not control the parameters for timing and bus width required for ROM and GP bus devices.
Those controls must be programmed independently in the ROM controller and GP bus
controller configuration registers.

Note: If a PAR window is configured for PCI, AND the CBAR register is programmed to
overlap with this PAR window, AND the PAR window is placed below the top of DRAM, the
MMCR is not given priority over the PCI access. This configuration could result in system
errors due to concurrence of both PCI and internal MMCR accesses.

Elan™SC520 Microcontroller User’s Manual 4-5

AMDZ\

System Address Mapping

Figure 4-1 Programmable Address Region (PAR) Register Format
Programmable Address Region Register
31-29 28-26 25 240
Target of the Attribute Page Size Region Size/Start Address
PAR Window (ATTR) (PG_S2) (SZ_ST_ADR)
(TARGET)
31 | 30 | 29 | Target Device 25 | Memory Page Size
0 0 0 | Window disabled 0 4-Kbyte memory page size on 4-Kbyte
boundary, ignored for 1/0 cycles.
0 0 1 | GPbusl/O
1 64-Kbyte memory page size on 64-Kbyte
0| 1| 0 | GPbusmemory boundary, ignored for I/O cycles.
0 1 1 | PCl bus (applies to
memory cycles to
PAR 0—PAR 1 only) Memory 24-18 17-0 Size defines up to 128
— Cycle - - pages of 4-Kbyte size each,
1|0 | 0 | BOOTCS (ROM) When Region Size Start Address | g 4-Kbyte boundary, for a
1 0 1 | ROMCSI [25]=0 (6-0] A[29-12] 512-Kbyte maximum window
size.
1 1 0 | ROMCS2 - -
Memory 24-14 13-0 Size defines up to 2K pages
1 1 1 | SDRAM Cycle - - of 64-Kbyte size each on 64-
When Region Size Start Address | kpyte boundary, for a 128-
[25]=1 [10-0] Al29-16] Mbyte maximum window
size.
1/0 24-16 15-0 Size defines up to 512 bytes
Cycles - - with byte resolution in 64-
Only Region Size Start Address | kpyte 1/0 space.
[8-0] A[15-0]
If Target is GP bus
If Target is ROM or SDRAM
28 | 27 | 26 | GP Bus Chip Select 28 | 27 | 26 | ROM/SDRAM Attribute
0| O 0 | GPCSO
0 0 1 | GPCs1 0 = Write-enabled region
1 = Write-protected region
0 1 0 | GPCS2
0 1 1 | GPCS3 0 = Cacheable region
1 = Noncacheable region
1 0 0 | GPCs4
— 0 = Code execution permitted
1 0 1 | GPCSS5 1 = Code execution denied
1 1 0 | GPCs6
1 1 1 | GPCS7
4-6 Elan™SC520 Microcontroller User's Manual

System Address Mapping

AMDA

4.3.3 Memory Space

Memory space in the ElanSC520 microcontroller includes SDRAM, ROM, PCI bus, GP
bus, and the MMCR registers. A system memory map is shown in Figure 4-2.

m The CPU has access to the entire memory space.

m PCI bus masters and the GP bus DMA controller have access to SDRAM space only.

Characteristics of these memory spaces are defined in subsequent sections.

Figure 4-2 System Memory Map

4 GbYIeS BooT ROM Space Ferrpoien
FFFEFFFFh
MMCR Space FFFEFO00h
Dedicated
PCI Bus
Space
1 Ghyte 3FFFFFFFh

Default PCI Bus
Space

Can also be
retargeted to
ROM or GP bus

256 Mbytes pefault is SDRAM up OFFFFFFFh
to amount of SDRAM
installed. Defaultis PCI
from top of configured
amount of SDRAM to
256 Mbytes

0 00000000h

Notes:

The boot ROM device
connected to BOOTCS
defaultsto a 64-Kbyte region
at the top of memory.

This space defaults to PCI
bus memory space, but
portions can be redirected
to ROM or GP bus via PAR
registers. Regions with
noncacheable, write-
protected, and/or execute-
protected ROM attributes
can be also be specified
with the PAR registers. Any
unused regions in this
space default to PCI.

This area is not decoded by
the ElanSC520
microcontroller’s host
bridge as a target.

This space defaults to
SDRAM, but portions can be
redirected to ROM, GP bus,
or PCI bus memory via PAR
registers, or redirected to
MMCR space, viathe CBAR
register. ROM or SDRAM
regions with noncacheable,
write-protected, and/or
execute privilege attributes
can be also be specified with
the PAR registers.

Accesses from PCI bus
masters are allowed to
installed SDRAM only.

Elan™SC520 Microcontroller User’s Manual

4-7

AMDZ\

System Address Mapping

4.3.3.1

4.3.3.2

SDRAM Space

SDRAM space in an ElanSC520 microcontroller system defaults to a linear region starting
at the lowest 32-bit memory address (00000000h) and ending at the top of SDRAM, which
is defined by the amount of SDRAM populated in the system and programmed in the
SDRAM controller's configuration registers.

The maximum amount of SDRAM supported in an ElanSC520 microcontroller system is
256 Mbytes, in various configurations between one and four physical banks. Once the
SDRAM configuration registers are programmed and the individual banks are enabled,
SDRAM is immediately accessible.

The ElanSC520 microcontroller allows special attributes to be applied to any region within
SDRAM space. These attributes are not required for normal operation, however some
applications can benefit from their use. Programming PAR registers for SDRAM access is
required onlyif special attributes must be applied to specific SDRAM regions, as described
below. There are three attributes that can be applied to any SDRAM region:

m Noncacheable regions
m Write-protected regions

m Code execution control

In a typical system configuration, an external PCI bus master has full access to the entire
SDRAM region. The address decoding logic in the ElanSC520 microcontroller's PCI host
bridge automatically claims cycles to this address space on the PCI bus generated by
external PCI bus masters and causes them to be directed to SDRAM. PCI bus master
cycles that are forwarded to the memory controller always result in an SDRAM cycle, even
if a PAR register has been programmed to redirect the address to the GP bus or ROM.
Also, if a PCI bus master generates a memory write cycle that is forwarded to the memory
controller and a PAR has been programmed to write-protect the region, an SDRAM write
cycle will occur with the SDQM signals inactive, the data will be discarded, and the data
written into the PCI bridge FIFOs will be purged. The ElanSC520 microcontroller can be
programmed to generate an interrupt in this case to notify the CPU of such write protection
violations, and that a PCI bus master caused the violations. Any data written to the write
buffer prior to enabling write-protection will be successfully written to SDRAM.

ROM/Flash Space

The ElanSC520 microcontroller supports three separate address regions for ROM/Flash,
which are selected by the PAR registers. The BOOTCS ROM chip select must be used for
the boot device and defaults to a 64-Kbyte linear region at the top of the 4-Gbyte CPU
space. During the boot process, the ROM code can configure PAR registers to enable the
entire BOOTCS ROM space and redirect it to the desired region. The default 64-Kbyte
region is always enabled, however. The PAR register accepts separate TARGET values for
each of the three ROM chip select regions (BOOTCS, ROMCS1, and ROMCS2). ROM
space is accessible by the CPU only, regardless of PAR register programming.

ROM space is normally cacheable and writes to these regions are allowed (this is useful
for Flash devices). However, PAR registers can also be used to enable specific attributes,
such as defining noncacheability and write-protected regions.

The ElanSC520 microcontroller supports multiple data widths in the ROM array, as well as
programmable timing. These characteristics are configured independently of the address
space in the ElanSC520 microcontroller. See Chapter 12, “ROM/Flash Controller”, for a
description of these features and instructions for configuring the ROM chip select timing
and data widths.

4-8

Elan™SC520 Microcontroller User’s Manual

System Address Mapping AMD:'

4.3.3.3

4.3.3.4

4.3.3.5

GP Bus Memory Space

GP bus memory space is enabled only through PAR registers and is accessible only by the
CPU. There are eight chip selects that can be selected by the PAR registers. Note that the
PAR registers do not allow any attributes to be defined in GP bus memory space regions,
and GP bus memory space is always noncacheable.

The PAR registers are used to select GP bus space and the specific chip select, but separate
configuration registers within the GP bus controller block must be programmed to control
the width of the data bus and the timing of the bus. There is no restriction on the mapping
of memory address space to GP bus chip selects. For example, if a noncontiguous memory
region is required for a specific chip select, then multiple PAR registers can be programmed
with the same chip select as the target, but with different address ranges.

Positive address decoding is also supported on the GP bus for devices that perform their
own address decoding and therefore do not require a chip select to be generated by the

ElanSC520 microcontroller. This is accomplished simply by not choosing the corresponding
chip select in the pin multiplexing registers when the PAR register is set up (see step 3 in
“Programming External Memory, Buses, and Chip Selects” on page 4-4). The address and
control signals are still generated on the GP bus.

PCI bus masters are not permitted to access the GP bus in an ElanSC520 microcontroller
system. If a PCI bus master generates an address in normal SDRAM space that is claimed
by the ElanSC520 microcontroller, but the region has been redirected to the GP bus via a
PAR register, the cycle will still be sent to SDRAM and will be write-protected, regardless
of the cycle type, and the resultant data will be discarded.

PCI Bus Memory Space

The ElanSC520 microcontroller’'s address decoding logic automatically defaults all memory
space above configured SDRAM to the PCI bus, with the exception of the 4-Kbyte memory-
mapped configuration space and the 64-Kbyte boot space. All CPU memory space
accesses in this address region are redirected to the PCI bus, and the ElanSC520
microcontroller does not claim accesses in this address region that are generated by PCI
bus masters. The GP bus DMA controller cannot access this region.

The CPU can allocate space within the lower 1 Gbyte for GP bus or ROM, overlaying and
effectively eliminating parts of this PCI bus region. For example, a ROM device could be

mapped in memory between the top of SDRAM and 1 Gbyte, a region that would normally
default to PCI bus. In this case, only this particular region would be redirected to ROM, but
the remaining region within the 4-Ghyte space would continue to be directed to the PCI bus.

Some system applications may require a region below the top of SDRAM to be redirected
to the PCI bus. An example of this is a PCI bus video card mapped to the 000A0000h-
000BFFFFh region in a PC/AT application. In this case, a PAR register must be used to
redirect the address from the CPU to the PCI bus instead of the SDRAM. Note that only
PAR 0 or PAR 1 can be used to select PCI as a target.

Note: If a PAR window is configured for PCIl, AND the CBAR register is programmed to
overlap with this PAR window, AND the PAR window is placed below the top of DRAM, the
MMCR is not given priority over the PCI access. This configuration could result in system
errors due to concurrence of both PCI and internal MMCR accesses.

Memory-Mapped Configuration Region (MMCR) Registers Space

All integrated peripherals and configuration registers in the ElanSC520 microcontroller that
are not defined as PCI bus configuration space, PC/AT peripheral configuration registers,
or the Configuration Base Address (CBAR) register are memory-mapped in the ElanSC520

Elan™SC520 Microcontroller User’s Manual 4-9

AMDZ\

System Address Mapping

4.3.3.5.1

microcontroller. These registers are accessed in a 4-Kbyte region near the top of CPU
address space at location FFFEF000h after reset, but can be additionally aliased to any
4-Kbyte boundary within the first 1-Gbyte of memory space (between 00000000h and
3FFFFFFFh) by performing an I/0 write to the Configuration Base Address (CBAR) register.
MMCR register space has a higher priority than the Programmable Address Region (PAR)
registers.

See Section 4.3.4.1 for details on programming the CBAR register.

Reading unimplemented registers in this 4-Kbyte region returns indeterminate data values.
Writing to unimplemented registers in this region has no effect.

Note: If a PAR window is configured for PCIl, AND the CBAR register is programmed to
overlap with this PAR window, AND the PAR window is placed below the top of DRAM, the
MMCR is not given priority over the PCI access. This configuration could result in system
errors due to concurrence of both PCI and internal MMCR accesses.

Integrated Memory-Mapped Peripherals

The ElanSC520 microcontroller’s non-PC/AT integrated peripherals are located within the
MMCR region, instead of being I/0O mapped as are the integrated PC/AT peripherals. The
peripherals located in the memory-mapped configuration region include:

= Am5,86 CPU extension registers

m SDRAM controller and SDRAM buffering
m ROM controller

m PCI host bridge

m System arbitration

m Memory and I/O space control

m GP bus controller

m PIO, pin multiplexing and clock control

m Software timer

m General-purpose timers 0, 1 and 2

m Watchdog timer

m Synchronous serial interface (SSI)

m Feature enhancements to PC/AT-compatible peripherals

— Programmable interval timer (PIT) extension registers in the programmable input/
output (P10) and programmable interrupt controller (PIC) blocks

— UART extensions
— Programmable interrupt controller (PIC) extensions
— Reset control

— GP-DMA controller extensions

4-10

Elan™SC520 Microcontroller User’s Manual

System Address Mapping AMD:'

4.3.4

1/0 Space

The ElanSC520 microcontroller’s 1/O space is partitioned into five regions:
m Configuration Base Address (CBAR) register

m PCI bus configuration space

m External PCI bus I/O devices

m Integrated PC/AT-compatible peripherals

m External GP bus I/O devices

Figure 4-3 shows the system 1/O address space map for the ElanSC520 microcontroller.
Each of the regions is described in the following sections.

Figure 4-3

System 1/0 Map

64 Kbytes CBAR FFFAh
FFFCh

Default PCI Bus
Space
Can also be
retargeted to GP bus

PCI Configuration ~ OCFFh
Registers OCF8h

Default PCI Bus
Space
Can also be
retargeted to GP bus

1 Kbyte , 03FFh
PC/AT Peripherals

(See Table 4-5)
The “holes” default to
external GP bus, but
can be redirected to

PCI bus. See

Section 4.3.4.4

0 0000h

4.3.4.1

Configuration Base Address (CBAR) Register

The Configuration Base Address (CBAR) register (Port FFFCh) is a 32-bit register that is
used to relocate the integrated memory-mapped peripherals and MMCR registers, thus
allowing a more flexible system memory map. The CBAR is fixed in 1/O space at FFFCh
and is “"keyed” to prevent accidental programming.

The CBAR allows an alias of the memory-mapped configuration registers (MMCR) to be
aliased anywhere in the first 1 Gbyte of address space on a 4-Kbyte boundary. The MMCR
is always available in the memory space directly below the boot ROM space at FFFEF000h,
but the CBAR can be programmed to optionally allow a copy of this region anywhere in the
lower 1-Gbyte space (on a 4-Kbyte boundary).

Elan™SC520 Microcontroller User’s Manual 4-11

AMDZ\

System Address Mapping

4.3.4.2

4.3.4.3

PCI Configuration Space

PCI Local Bus Specification, Revision 2.2, defines an indirect-mapped configuration space
that occupies only eight bytes in 1/0 space from 0CF8—0CFFh, and this mechanism is
supported in the ElanSC520 microcontroller. The PCI bus configuration scheme uses two
32-bit 1/O locations:

m PCI Configuration Address (PCICFGADR) register (Port 0CF8h) is the address register
where the actual address of the device’s register and the bus number is located.

m PCI Configuration Data (PCICFGDATA) register (Port 0OCFCh) is the dataregister where
the data of the specific register is written to or read from.

This PCI configuration space is accessible only by the CPU in the ElanSC520
microcontroller, and the I/O cycle is claimed by the PCI bus configuration register block.

As a target, the ElanSC520 microcontroller does not accept any PCI bus configuration
space accesses from other PCI bus masters.

Host-bridge-specific PCI configuration registers are described in the Elan™SC520
Microcontroller Register Set Manual, order #22005. See also the PCI Local Bus Specification,
Revision 2.2, for details on PCI bus device configuration register programming.

PCI 1/0O Space

The CPU’s I/O cycles can be directed to the PCI bus for normal direct-mapped access of
devices, with the following restrictions:

m |/O addresses claimed by the integrated PC/AT peripherals and the CBAR cannot be
forwarded to the PCI bus under any conditions. See the I/O map in Figure 4-3 on
page 4-11 and Table 4-5 on page 4-14 for details of the 1/0 addresses that are claimed
by the integrated peripherals.

m By default, the “holes” in this portion of the 1/0 address space (0000-03FFh) are
forwarded to the external GP bus. The Address Decode Control (ADDDECCTL) register
(MMCR offset 80h) can be configured to forward accesses to these holes to the PCI
bus. A PAR register is not required for this.

m |/O addresses implemented by PCI bus configuration space (0CFC—OCFFh) are only
forwarded to the PCI bus as an 1/O cycle when the ENABLE bit in the PCI Configuration
Address (PCICFGADR) register is cleared to 0. Otherwise, they are forwarded as a PCI
configuration cycle. Ports 0CF8—0CFBh are forwarded to the PCl bus as I/O transactions
only for non-doubleword accesses to this region; otherwise, they are claimed by the host
bridge as a PCI configuration cycle.

All other CPU 1/O cycles are, by default, forwarded to the PCI bus as normal PCI 1/O
transactions. PAR registers can be enabled to direct portions of this region to the GP bus.

As a target, the ElanSC520 microcontroller does not accept any /O space accesses from
PCI bus masters.

4-12

Elan™SC520 Microcontroller User’s Manual

System Address Mapping AMD:'

4.3.4.4

PC/AT-Compatible 1/0 Peripherals Region

The ElanSC520 microcontroller includes several integrated peripheral cores that are
PC/AT compatible, including the DMA controller, programmable interrupt controller (PIC),
programmable interval timer (PIT), UARTS, real-time clock, and various control/status
registers. These 1/0 addresses are automatically decoded by the ElanSC520
microcontroller's address decoding logic and require no special setup or PAR registers.
Table 4-5 summarizes the I1/0O map for these integrated peripherals.

There are holes in this region, which are I/O transactions in the lower 1-Kbyte region that
not claimed by the ElanSC520 microcontroller’s internal peripherals. These addresses can
be decoded externally, or, if a chip select is required, a PAR register can be programmed
for these addresses.

m By default, all of the accesses to holes in this portion of the I/0O address space (0000h
to 03FFh) are forwarded to the external GP bus.

m To forward all accesses to the PCI bus, the IO_ HOLE_DEST bitin the Address Decode
Control (ADDDECCTL) register (MMCR offset 80h) can be set.

m If necessary, PARX registers can be used to override sending accesses to the PCI bus
on an individual peripheral basis. In this way, accesses for individual peripherals can be
directed back to the external GP bus.

For example, some PCI cards (notably VGA cards) use legacy I/O locations. The
I0_HOLE_DEST bit allows the holes to be directed to either the PCI or to the GP bus. For
a system requiring legacy GP bus peripherals along with legacy PCI peripherals (for
instance, a PCl VGA card and a GP bus keyboard controller), the IO_ HOLE_DEST bit
would be setto 1to directall accessesto the PCl bus. The legacy GP bus keyboard controller
would then be configured via PAR registers to override this setting. See “VGA Controller
on the PCI Bus” on page 3-15 for another discussion of this topic.

Note: If a PARX register is configured to address GP bus I/O space within a hole, accesses
in the defined region are forwarded to the GP bus regardless of the |IO_HOLE DEST bit
value. It is the programmer’s responsibility to ensure that external peripherals are not
mapped over any of the ElanSC520 microcontroller’s internal peripherals. Normal operation
is not guaranteed in this case. See “Disabling Internal Peripherals” on page 3-21 for more
information about this topic.

Elan™SC520 Microcontroller User’s Manual 4-13

AMDZ\

System Address Mapping

Table 4-5 PC/AT Peripherals 1/0 Map

Peripheral Core

I/O Address Range

Slave GP-DMA Controller 0000-000Fh
Master Interrupt Controller 0020-0021h
Slave 2 Interrupt Controller 0024-0025h
» This controller is not defined in standard PC/AT architecture, but has beenincluded

in the ElanSC520 microcontroller to provide additional interrupt request sources
Programmable Interval Timer (PIT) 0040-0043h

Keyboard Control A20M and Fast Reset (SCP)
* Accesses to these locations are always directed to the external GP bus, but are
also snooped internally for PC/AT functions.

0060h, 0064h

System Control Port B/NMI Status
* Reads and writes to this location are directed to this register only and are not seen
on the external GP bus

0061h

Real-Time Clock (RTC) Index/Data

0070h, 0071h

General-Purpose Scratch Registers 0080h
e These are unused locations from the original DMA Page Register file and are 0084-0086h
maintained for PC/AT compatibility. Writes to these locations update the 0088h
corresponding register and are also seen on the external GP bus. Reads to the 008C-008Eh
locations return the data from the corresponding register, but do not initiate a cycle
on the external GP bus.
General-Purpose Scratch Register 008Fh
¢ This is an unused location from the original DMA Page Register file and is
maintained for PC/AT compatibility. Reads and writes to this location are directed
to this register only and are not seen on the external GP bus.
GP-DMA Page Registers 0081-0083h
« Reads and writes to these locations are directed to these registers only and are not 0087h
seen on the external GP bus. 0089h-008Bh
System Control Port A 0092h
Slave 1 Interrupt Controller 00A0—-00A1h
Master GP Bus DMA Controller 00C0-00DEh

(even addresses only)

Floating Point Error Interrupt Clear 00FOh

UART 2 02F8-02FFh

UART 1 03F8—03FFh
The ElanSC520 microcontroller also allows the internal UARTSs and the real-time clock
(RTC)to be disabled, for applications when an external device is preferred. Thisis controlled
by configuration register bits in the Address Decode Control (ADDDECCTL) register
(MMCR offset 80h). When these peripherals are disabled, the 1/0O cycle is forwarded
externally to the GP bus. This allows connection of external devices such as a standard
Super 1/O chip.
Integrated PC/AT peripherals are not accessible by PCI bus masters.

4-14 Elan™SC520 Microcontroller User's Manual

System Address Mapping AMD:'

4.3.4.5

4.3.5
4.3.5.1

4.3.5.2

4.3.5.2.1

GP Bus 1/O Region

The PAR registers must be used to address external 1/0O devices on the GP bus. GP bus
addressing is implemented with byte granularity, to accommodate devices with very few
registers and very fragmented 1/O maps that are typically found in PC/AT-compatible
systems.

When programming PAR registers for GP bus I/O space, it is best to configure the space
ondoubleword boundaries. Note that when specifying unaligned byte regions for I/0O access,
the software that accesses the regions must directly address the correct byte or bytes. For
example, if a PAR is programmed with an I/O region, and the start address is xxx1h (i.e.,
byte #1), when the CPU performs a word or doubleword access starting at xxx0h (i.e., byte
#0), the entire doubleword access is redirected to the PCI bus (byte #1 will not be accessed
on the GP bus as programmed). In this case, the byte requested must be directly accessed
by the CPU at I/O address xxx1h.

This region is not accessible by PCI bus masters.

Configuration Information
Configuring ROM/Flash Space

There are three ROM address regions that can be defined in the ElanSC520 microcontroller,
but only the BOOTCS region is absolutely required for system boot up from reset. The
optional two regions, ROMCS1 and ROMCS2 are configured via PAR registers. BOOTCS
configuration is described in Chapter 3, “System Initialization”. See “Programmable
Address Region (PAR) Registers” on page 4-5 for details on PAR register programming.

Configuring SDRAM Address Space

SDRAM space is determined at boot time when the SDRAM controller’s configuration
registers are programmed and individual banks are enabled. A typical design can perform
an SDRAM sizing routine to determine the amount of memory installed in the system and
write the appropriate values to the configuration registers. For example, in a system that
contains 16 megabytes of SDRAM, initialization software defines the SDRAM address
region from 00000000—-00FFFFFFh, and all accesses to this region are forwarded to the
SDRAM controller unless a PAR register has been programmed to overlay the region with
MMCR, ROM, PCI bus, or GP bus space.

Noncacheable, Write-Protected, or Nonexecutable SDRAM Regions

In the default condition, the entire SDRAM region is cacheable and executable by the CPU,
and read/writable by the CPU, PCI bus master, and GP bus DMA controller cycles. There
may be some system configurations in which specific portions of SDRAM require restricted
access which can be accomplished by enabling specific attributes. A few common examples
follow:

m An SDRAM region that contains only code can be marked as write-protected with an
attribute in the PAR register. This prevents the CPU and any bus master from illegally
writing over the code in SDRAM due to faulty programming. In addition, an interrupt can
be generated to the CPU when a violation occurs to assist in debug of the illegal write
condition.

m An SDRAM region that contains only data can be marked as nonexecutable with an
attribute in the PAR register. If a software task attempts to branch to that location and
resume execution due to a software bug, the CPU will read an illegal opcode, forcing an
exception. The exception handler will then facilitate debugging the program that caused
the illegal condition.

Elan™SC520 Microcontroller User’s Manual 4-15

AMDZ\

System Address Mapping

4.3.5.3

4.3.5.3.1

4.3.5.3.2

4.3.5.3.3

Configuring GP Bus Peripheral Space

Configuring space for GP bus peripherals is accomplished via PAR register programming.
This section describes a few system configuration examples beyond the normal
programming of chip select regions.

Configuring a Chip Select for Noncontiguous Memory or I/O Space

Some peripheral subsystems may require a single chip select that must be asserted in
noncontiguous address locations. For example, an I/O device can contain multiple
integrated functions that are each addressed at separate, noncontiguous I/O addresses
(such as a custom ASIC). In this case multiple PAR registers can be used to define each
individual address region, but all can be mapped to the same chip select by programming
the TARGET field to GP bus and the ATTR field to the same chip select. This is most useful
when working with a highly fragmented I/O map such as defined in PC/AT systems, where
there is little unused I/O address space.

This can also be accomplished by programming a single PAR register to cover the entire
range of addresses, which results in some wasted address space.

Positive Decoding Example

Some peripherals connected to the GP bus may perform their own address decoding from
the GP bus addresses and do not require a chip select. In this case, the same steps are
followed for programming the configuration registers, but the pin multiplexing registers do
not need to be programmed to allow the actual chip select to be driven on a pin, thus allowing
the pin to be used for other functions.

If multiple positive decoding regions are required in an application, the PAR registers for
each reason can be programmed to map to the same unused chip select, to conserve pin
functions.

Configuring the Elan™SC520 Microcontroller to Use an External Super I/O Chip

It may be desirable to connect a commercially available Super 1/0O chip on the GP bus in
an ElanSC520 microcontroller system (for example, systems requiring a keyboard or IDE
drive can implement this device).

In this case, since the Super I/O implements two UARTSs programmed at the same address
as the ElanSC520 microcontroller’s integrated UARTS, the internal UARTS can be disabled
to support the COM1 and COM2 ports in the Super I/O chip, if desired. In this case, when
the CPU performs I/O accesses to the UART address regions, the cycles will be forwarded
out to the external GP bus. Also, the Super I/O is a positive decoding device, i.e., it does
not require a chip select because it performs the address decoding from the GP bus
addresses.

The I/0 map for the Super I/O device is fragmented and may require the use of multiple
PAR registers for noncontiguous addressing, as described in Section 4.3.5.3.1. If the
fragmented I/O space unused by the Super I/O chip is not required elsewhere in the system,
then a single PAR register can be used to map the entire range of peripherals. In this case,
the UART address spaces would be the highest used I/0O space internally in the ElanSC520
microcontroller, so the Super I/O peripherals would not be in conflict, allowing a single PAR
register to define the entire range of Super I/O peripherals from 01F0-07BEh.

See “Interfacing with a Super I/O Controller” on page 13-13, for an example of connecting
the Super I/O chip to the ElanSC520 microcontroller's GP bus.

4-16

Elan™SC520 Microcontroller User’s Manual

System Address Mapping AMD:'

4.3.5.4

4.3.5.4.1

4.3.5.4.2

4.3.5.4.3

Configuring the Elan™SC520 Microcontroller for Windows® Compatibility

The ElanSC520 microcontroller can be configured to operate as a Windows compatible
microcontroller. This section describes some of the steps that may be required to configure
the memory and I/O addressing; however, this will vary depending on the requirements of
the system.

Memory Regions Above DOS 640-Kbyte Application Space

The ElanSC520 microcontroller can be programmed to accommodate the legacy PC/AT-
compatible region above the DOS 640-Kbyte application space at 000A0000h area ending
at 000FFFFFh (1 Mbyte). This space defaults to SDRAM once the SDRAM banks are
enabled, but the PAR registers can be programmed to support the various requirements of
systems requiring Windows compatibility. The list below outlines some of the steps to
consider when building a memory map in the ElanSC520 microcontroller system for such
compatibility.

m Two 64-Kbyte video regions from 000A0000—000AFFFFh and 000BO000—000BFFFFh
default to SDRAM, but can be enabled as PCI bus space for PC/AT compatible video
cards on the PCI bus, via one of the PAR registers. The ElanSC520 microcontroller’s
PCI bus host bridge (as a target) will automatically ignore accesses in this space when
either PAR 0 or PAR 1 are programmed to overlay SDRAM regions with the PCI bus.

m The remaining area from 000C0000—000FFFFFh is normally sub-divided in a PC/AT
system into several different address regions for BIOS, and accesses to these regions
can be redirected to either ROM, the GP bus, or the PCI bus by programming PAR
registers. Most systems will not require the use of all BIOS regions defined, since many
are for expansion ROMs intended for various plug-in cards (such as network interface
cards). The following regions are normally defined:

— One BIOS region with 64-Kbyte granularity from 000FO000-000FFFFFh

— Four extended system BIOS regions, each with 16-Kbyte granularity from 000E00000—
O0OEFFFFFh

— 8 Expansion ROM regions, each with 16-Kbyte granularity, from 000C0000—
OO0ODFFFFFh

Integrated Peripheral Mapping

Because the ElanSC520 microcontroller already provides standard PC/AT-compatible
peripherals that use direct I/O address mapping, there are no 1/0O address conflicts with
these devices. See Table 4-5 on page 4-14 for a summary of this I/O map.

The Configuration Base Address (CBAR) register (Port FFFCh) can be used to alias the
internal memory-mapped registers and peripherals to a convenient location. For example,
they could be mapped between 640 Kbytes and 1 Mbyte for real mode operation. The
memory-mapped configuration region is always available in the upper CPU space

(4 Gbytes), but the aliased location is only accessible when the CBAR is programmed and
the ENABLE bit has been set.

DMA Channel and Interrupt Request Steering

The ElanSC520 microcontroller provides a method to route interrupt request sources and
DMA request pins to the appropriate channels on the programmable interrupt controller
(PIC) and the GP-DMA controller, respectively.

See Chapter 15, “Programmable Interrupt Controller”, for further information on interrupt
reqguest routing.

See Chapter 14, “GP Bus DMA Controller”, for further information on DMA request routing.

Elan™SC520 Microcontroller User’s Manual 4-17

AMDZ\

System Address Mapping

4.3.5.5

4.3.6

4.3-7

Configuring PCI Bus Devices

PCI bus device configuration is accomplished in the ElanSC520 microcontroller with the
standard PCI Configuration Mechanism #1, as defined in the PCI Local Bus Specification,
Revision 2.1. This configuration requires an indirect mapped /O scheme in which the
address of the device is written to the PCI Configuration Address (PCICFGADR) register
(Port OCF8h), and the data is accessed via the PCI Configuration Data (PCICFGDATA)
register (Port OCFCh). See“Configuration Information” on page 9-9 for more information.
See also the PCI Local Bus Specification, Revision 2.2.

Interrupts

The ElanSC520 microcontroller can be programmed to generate an interrupt request when
a write protection violation occurs, providing software with a debugging mechanism to
determine which task illegally attempted to write to the memory region marked with this
attribute. In this case, an interrupt request is generated to the programmable interrupt
controller (PIC) block, where the request is routed to the appropriate type of interrupt
(maskable or non-maskable) and level, based on the programming of the configuration
registers. The PAR window that contains the address region where the write protect violation
occurred is latched into a register, as well as which bus owner caused the violation (CPU,
GP-DMA controller, or PCI bus master).

See Chapter 15, “Programmable Interrupt Controller”, for details of PIC programming.

Software Considerations

Since the ElanSC520 microcontroller provides some flexibility in defining the system
memory and I/O map, there are a number of software considerations that must be analyzed.
The list below describes some of the issues that must be considered when programming
the configuration registers to define the memory and 1/O space in an ElanSC520
microcontroller system.

m The Configuration Base Address (CBAR) register must be accessed as a 32-bit I/O
register to guarantee that all bits are written at the same time. The MATCH field of the
CBAR must be written with the correct pattern to enable or disable the MMCR alias.

m MMCR register space has higher priority than the Programmable Address Region (PAR)
registers.

m The PAR registers are organized such that the lowest register (PAR 0) is the highest
priority and the last PAR register (PAR15) is lowest priority. Therefore, if two PAR registers
are overlaid due to programming, the lowest numbered PAR takes priority.

m PAR registers should not be programmed to conflict with any of the fixed 1/O regions,
such as the Configuration Base Address (CBAR) register or the PCI bus configuration
space.The ElanSC520 microcontroller's address decoding does not permit PAR
registers to overlay the integrated PC/AT peripherals.

m In general, the PAR register start address and region size should not be programmed
to conflict with each other. Itis possible to program the PAR registers such that the region
size is greater than the start address allows. For example, if the region size is defined
as 64 Kbytes, but the start address is programmed to be the top of the 1-Gbyte region
(maximum address allowed by PAR registers) minus 4 Kbytes, then the address space
available will be the 4-Kbyte region starting at the start address.

— Subsequent access past the 1-Gbyte boundary will still be to the PCI bus
— The remaining 60-Kbyte region will not qualify as a PAR hit.

4-18

Elan™SC520 Microcontroller User’s Manual

System Address Mapping AMD:'

When programming the PAR registers for an SDRAM region, the PAR register start
address and region size should not conflict with the programmed value that defines the
top of SDRAM in the system. For example, if a PAR is setup for SDRAM and the region
size is defined as 8 Kbytes, but the start address is programmed to be the top of the
SDRAM minus 4 Kbytes, then addresses above the top of SDRAM will not result in a hit
for this PAR.

If the TARGET field of any PAR register is defined as SDRAM, but no SDRAM has been
enabled via the SDRAM controller configuration registers, the memory space defaults
to the PCI bus.

Systems that configure another memory space resource to be overlaid on top of SDRAM
space do not have access to the SDRAM that was overlaid, since address translation

is not supported in the ElanSC520 microcontroller. For example, if a PCl bus video card
is used in the 000A0000—000AFFFFh region (as in typical PC/AT operation), the system
will lose the 64 Kbytes of SDRAM in that region as long as the PAR register is enabled.

Any region that is overlaid on default SDRAM space through a PAR register or CBAR
takes priority over the SDRAM region in the decoding block. In effect, a portion of SDRAM
becomes inaccessible when this is done. If a PCI bus master generates an address to
this overlaid address region, the cycles will be forwarded to SDRAM and will be write-
protected.

Code execution from memory on the GP bus or the PCI bus is discouraged (after boot
code has executed), since accesses to these spaces are not cacheable and may result
in unacceptable latencies under some conditions. Code execution is more efficient when
executing from SDRAM or from ROM devicesthat use BOOTCS, ROMCS1, or ROMCS2,
because accesses to these resources are cacheable.

The ElanSC520 microcontroller guarantees coherency with SDRAM buffers that are
shared between the CPU and other bus masters, but it may be beneficial to mark these
regions as noncacheable to avoid the overhead with cache write-backs upon every
access by the bus master. This can be accomplished by programming a PAR register
and setting the noncacheable attribute. Cache snooping will continue; however, the
performance impact is negligible, since there will be no write-back cycles.

Care must be taken when programming configuration registers that affect address
decoding during normal system operation when either PCI bus master or GP bus DMA
activity is occurring.

— When writing to PAR registers, verify that the ElanSC520 microcontroller’s PCI host
bridge target FIFOs have been flushed and disable PCI bus master access of SDRAM
to prevent unexpected forwarding of accesses from other masters. An example of a
potential problem is modifying a PAR register to redirect normal SDRAM region
accesses to the PCI bus, while a PCI bus master has already been granted the PCI
bus. In this case, when the CPU completes the write to the PAR register, the posted
PCI bus master access is forwarded to the SDRAM controller because the bus was
already granted to the PCI bus master. This problem can be alleviated by disabling
PCl bus master access to SDRAM (the default mode after reset) via the System Arbiter
Master Enable (SYSARBMENB) register (MMCR offset 72h), and performing a read
from an external PCI agent to flush the ElanSC520 microcontroller’s target FIFOs,
before writing to configuration registers that affect address decoding.

— The CPU cache should always be flushed after the cacheability attribute is changed
from cacheable to noncacheable for any memory region (by programming the PAR
register), or when the cache write policy is changed from write-back to write-through.

Elan™SC520 Microcontroller User’s Manual 4-19

AMDZ\

System Address Mapping

Programming the PAR register maximum region size and a page size of 64 Kbytes allows
aspace up to 128 Mbytes to be defined; however, the GP bus/ROM address pins support
a maximum of 64 Mbytes per chip select. If a 128-Mbyte space is programmed for a GP
bus or ROM chip select, the upper 64 Mbytes will be aliased with the lower 64-Mbyte
region.

When programming PAR registers for GP bus I/O space, itis best to configure the space
on doubleword boundaries. Note that when specifying unaligned byte regions for 1/0
access, the software that accesses the regions must directly address the correct byte
or bytes. For example, if a PAR is programmed with an I/O region, and the start address
is xxx1h (i.e., byte 1), when the CPU performs a word or doubleword access starting at
xxx0h (i.e., byte 0), the entire doubleword access is redirected to the PCI bus (byte 1
will not be accessed on the GP bus as programmed). In this case the byte requested
must be directly accessed by the CPU at I/O address xxx1h.

A write-protection violation occurs when the CPU, any PCI bus master, or the GP-DMA
controller attempts to write to any memory region that has been marked as write-
protected by a PAR register attribute. When this occurs, the cycle is always forwarded
to SDRAM as a write cycle with the SDQM signals inactive, and the original data is
discarded. Any data that was written to the write buffer prior to enabling write-protection
is successfully written to SDRAM.

Software must include proper interrupt service routines and exception handlers when
enabling write-protection violation interrupts and nonexecutable region attributes in the
Address Decode Control (ADDDECCTL) register (MMCR offset 80h). Note that in the
case of the write protection violation, the PAR register number that contains the address
region of the violation is latched in the WPV_WINDOW bit field in the Write-Protect
Violation Status (WPVSTA) register (MMCR offset 82h) and retained until it is cleared
by software. The PARx window number is latched when a write-protect violation occurs.
Subsequent write-protect violations are not captured until software clears the interrupt
by writing a 1 to the WPV _STAT bit in the same register.

If two or more PAR registers are overlapping (programmed to have some address range
in common), the write-protection exception is generated only if the higher priority PAR
has the attribute enabled. If the lower priority PAR has the write-protect attribute enabled
but the higher priority PAR has it disabled, then writes into the common address range
shared by the two PAR registers will not generate an exception. This discussion applies
to the cacheability control and code execution attributes, as well.

Access of ElanSC520 microcontroller internal configuration registers:

— All integrated PC/AT peripherals mapped to 1/O space must be accessed only as 8
bits unless otherwise specified.

— All memory-mapped integrated peripherals and configuration registers for PC/AT
peripherals must be accessed as specified in the Elan™SC520 Microcontroller
Register Set Manual, order #22005.

— PCl configuration registers should be accessed as 32 bits unless otherwise specified
in the Elan™SC520 Microcontroller Register Set Manual, order #22005.

4-20

Elan™SC520 Microcontroller User’s Manual

System Address Mapping AMD:'

4.4

INITIALIZATION

The ElanSC520 microcontroller’s address decoding is cleared to the default state by a
system reset.

The BOOTCS decoding is enabled for the 64-Kbyte region from FFFFO000—-FFFFFFFFh
SDRAM address space is disabled.

All PAR registers are disabled and cleared to zeros, which means there are no external
GP bus address spaces enabled. Note that I/O holes below 1 Kbyte will be directed to
the external GP bus. However, no chip selects are enabled, and positive decodes would
be required.

Integrated PC/AT peripheral I/O space is enabled as defined in Table 4-5 on page 4-14.

The Configuration Base Address (CBAR) register is addressed in I/O space at FFFCh.
Memory-mapped configuration register space is enabled at FFFEFO00-FFFEFFFFh
(below CPU boot space address).

The PCI bus is disabled, and the configuration registers are defaulted to the values
specified in PCI Local Bus Specification, Revision 2.2. PCI configuration space is
enabled in I/O space at ports 0CF8h and OCFCh (PCICFGADR and PCICFGDATA).

See “Programmable Address Region (PAR) Registers” on page 4-5 for information on
configuring these registers. See “Configuration Information” on page 4-15 for additional
detail on configuring the various address spaces included on the ElanSC520
microcontroller.

Elan™SC520 Microcontroller User’s Manual 4-21

AMDH System Address Mapping

4-22 Elan™SC520 Microcontroller User’s Manual

AMD X\

5 CLOCK GENERATION AND CONTROL

5.1

OVERVIEW

The ElanSC520 microcontroller is designed to generate all of the internal and system clocks
it requires. The ElanSC520 microcontroller includes on-chip oscillators and PLLs, as well
as most of the required PLL loop filter components.

The ElanSC520 microcontroller requires two standard crystals, one for 32.768 kHz and
one for 33 MHz. All the clocks required inside the ElanSC520 microcontroller are generated
from these crystals. Output clock pins are provided for selected clocks, providing up to 24
mA of sink or source current.

The ElanSC520 microcontroller also supplies the clocks for SDRAM and the PCI host
bridge; however external clock buffering may be required in some systems.

The clocking generation and control features include:

m RTC low-current oscillator using standard off-the-shelf 32.768-kHz crystal

m 33-MHz oscillator using standard off-the-shelf 33-MHz crystal (33.000 or 33.333 MHz)
m 33-MHz clock provides clocks for the integrated Am5,86 CPU and external PCI bus

m Integrated 66-MHz PLL provides clocks for external SDRAM

m Integrated PLLs for generating 1.1892-MHz PIT clock and 18.432-MHz UART clock

m Integrated on-chip PLL loop filters for the 66-MHz and 36.864-MHz PLLs, eliminating
the need for external capacitors

m 33.333-MHz/30.000-MHz PCI Clock Output Pin, CLKPCIOUT
m 66-MHz SDRAM Clock Output Pin, CLKMEMOUT
m 33-MHz and 32.768-kHz oscillators bypass option

Note: The ElanSC520 microcontroller supports either a 33.000-MHz or 33.333-MHz
crystal. In this document, the term “33 MHZz" refers to the system clock derived from
whichever 33-MHz crystal frequency is being used in the system.

Elan™SC520 Microcontroller User’s Manual 5-1

AMDﬂ Clock Generation and Control

5.2 BLOCK DIAGRAM

Figure 5-1 shows a block diagram of the ElanSC520 microcontroller’s internal clocks.
Table 5-1 shows PLL lock times and oscillator start-up times. See the Elan™SC520
Microcontroller Data Sheet, order #22003, for timing diagrams and additional clocking
specifications.

Figure 5-1 Clock Source Block Diagram

\
| | 32.768-kHz RTC
32.768-kHz Ef 32.768-kHz
Crystal —— Oscillator }
| 32.768-kHz SDRAM Refresh
36.864 MHz
1.47456 MHz DIV 31
—p PLL1 - > PLL2 — > 1.1892-MHz PIT
LF PLL1 < 4
- DIV 2
| 18.432-MHz UART
33-MHz —— 33-MHz
[])
Crystal —— Oscillator 33 MHz CPU
|
33 MHz PCI
33 MHz GP Bus
33 MHz GP DMA
33 MHz ROM
33 MHz ssl
33 MHz Timers?!
— PLL3
66 MHz SDRAM
Notes:

1. Includes the programmable interval timer (PIT), general-purpose timers, watchdog timer, and the software timer.

Table 5-1 Clock Start-up and Lock Times

Clock Source Max
32.768-kHz Oscillator 1s
33-MHz Oscillator 10 ms
PLL1 (1.47456 MHz) 10 ms
PLL2 (36.864 MHz) 100 us
PLL3 (66 MHz) 50 ps

5-2 Elan™SC520 Microcontroller User’s Manual

Clock Generation and Control AMDl‘yl

5.3 SYSTEM DESIGN

Figure 5-2 shows a system block diagram of the ElanSC520 microcontroller’s external
clocks. As shown in Figure 5-2, external clock drivers may be necessary when the system
presents a large capacitive load.

Table 5-2 lists the shared clock signals of the ElanSC520 microcontroller.

Figure 5-2 System Clock Distribution Block Diagram

VCC_ANLG
32KXTAL1
32.768-kHz [66 MHz
Crystal ;l Cc2 C1 N
32KXTAL2
R1 [\
] —_—
33MXTAL1 Optional
33-MHz LF_PLL1 Clock [SORAM
Crystal —— Driver
y L 33MXTAL2 |-
|
—>
\ o/
CLKMEMOUT 66 MHz /\l > —
CLKMEMIN 1/
\
CLKPCIIN - "\l
N Earryvre
CLKPCIOUT — —3MHz | - Optional 1, 33 MHz
N Clock v
CLKTIMER/ Programmable Driver
[CLKTEST] &
Elan™SC520
Microcontroller
l\
Note: Dotted line ovals, ‘, signify frequency groups. PC_:l PC_|
\/ Device Device

Table 5-2 Clock Signals Shared with Other Interfaces

Default Function [Alternate Function | Control

CLKTIMER CLKTEST CLK_PIN_DIR bit in Clock Select (CLKSEL) register
(MMCR offset C26h)

Elan™SC520 Microcontroller User’s Manual 5-3

AMDZ\

Clock Generation and Control

5.3.1

5.3.2

Clock Pin Loading
Clock pins are designed to either source or sink 24 mA. The maximum amount of capacitive
load that can be placed on a clock pin is determined by the required rise/fall times.
Use the following equation to determine the maximum capacitive loading.
C = I/(dV/dt)
where:

I = Current
dV = Voltage change
dt = Time change

As an example, suppose that the system requires a rise/fall time of 1 ns, with a voltage
swing of 2.5 V. Then, the maximum capacitive load is:

Cinax = 24 mA/(2.5V/1 ns) = 9.6 pF

Derating curves for the device are provided in the Elan ™SC520 Microcontroller Data Sheet,
order #22003.

Selecting a Crystal

The accuracy of the real-time clock (RTC) depends on several factors relating to crystal
selection and board design. A clock timing budget determines the clock accuracy. The
designer should determine the timing budget before selecting a crystal.

There are four major contributors to a clock timing budget.

m Frequency Tolerance—This is the crystal calibration frequency. It states how far off the
actual crystal frequency is from the nominal frequency. For a typical 32.768-kHz crystal
(watch crystal), the frequency tolerance is + 20 parts per million (ppm). Frequency
tolerance is specified at room temperature.

m Frequency Stability—This parameter is a measure of how much the crystal resonant
frequency is influenced by operating temperature. For watch crystals, typical numbers
are around —30 ppm over the temperature range.

m Aging—This parameter is how much the crystal resonant frequency changes with time.
Typical aging numbers are = 3 ppm per year.

m Load Capacitance—The crystal is calibrated with a specific load capacitance. If the
system load capacitance does not equal the crystal load capacitance, a timing error is
introduced. The timing error is calculated by the following equation.

Error = {[1 + C1/(CLya+C0)]Y2 — [1 +C1/(CLgystem+CO)*2} [1 + CL/(CLyyr+Co)]*2
where:

C1 is the crystal motional capacitance
Co is the crystal static capacitance
Clytq is the crystal load capacitance
CLgystem is the system load capacitance

For the error in ppm, multiply Error by 10°.

Once the complete timing error has been calculated by adding all of the errors together,
compare it to the initial timing budget. Table 5-3 provides a convenient translation of ppm
to seconds per month.

5-4

Elan™SC520 Microcontroller User’s Manual

Clock Generation and Control AMD:'

Table 5-3

5.3.2.1

5.3.3

Timing Error as It Translates to Clock Accuracy

Timing Error
(Parts per Million) Seconds/Month

+10 +25.9

+20 +51.8

+30 +77.8

+40 +103.7

+50 +129.6

Detailed crystal specifications and further information on crystal selection can be found in
the Elan™SC520 Microcontroller Data Sheet, order #22003.

Running the Elan™SC520 Microcontroller at 33.333 MHz

The clock thatis supplied to the PCl bus (CLKPCIOUT) is exactly the same as the frequency
of the crystal. The ElanSC520 microcontroller simply buffers the 33-MHz crystal input and
provides itto the CLKPCIOUT pin. Since crystals have inaccuracies, itis possible that these
inaccuracies cause the period of CLKPCIOUT to become marginally less than 30 ns.

Itis up to the system designer to choose the accuracy of the crystal used with the ElanSC520
microcontroller. The 33.000-MHz frequency provides a better guard band than the 33.333-
MHz crystal. In practice, most PCI devices can tolerate both frequencies, but it is important
to be aware of the impact of choosing the crystal on this potential violation of the PCI bus
specification. The PCI Local Bus Specification, Revision 2.2 requires that the minimum
clock period be 30 ns.

Bypassing Internal Oscillators

The 32.768-kHz and the 33-MHz ElanSC520 microcontroller oscillators can be bypassed
by connecting an external clock to the crystal pins. See Figure 5-3 and Figure 5-4 for
suggested circuitry.

Figure 5-3 shows two resistors in series with their common node connected to 32KXTAL2.
The value of the resistor connected to ground (R2) is 100 ka. The value of R1 depends on
the voltage level of the external oscillator, according to the following formula:

V(32KXTAL2) = 2.5 V = R2 / (R2 + R1) * V(External Oscillator)

Figure 5-3

Bypassing the 32.768-kHz Oscillator

External R1 2.5-V £10% typical
32.768-kHz WY
Oscillator 32KXTAL2
R2
100 ke § 32KXTALL
Y ,

Elan™SC520
Microcontroller

Elan™SC520 Microcontroller User’s Manual 5-5

AMDZ\

Clock Generation and Control

Figure 5-4 Bypassing the 33-MHz Oscillator
External 2.5-V +10% typical
33-MHz 33MXTAL2
Oscillator
No Connect 33MXTAL1
Elan™SC520
Microcontroller
5.4 REGISTERS
A summary listing of the memory-mapped configuration registers used to control the clocks
on the ElanSC520 microcontroller is shown in Table 5-4.
Table 5-4 Clock Control Registers—Memory-Mapped
MMCR
Offset
Register Mnemonic Address Function
Am5,86 CPU Control CPUCTL 02h CPU clock speed control
Software Timer Configuration | SWTMRCFG C64h Crystal frequency (33.000 MHz or 33.333 MHz)
for software timer
Clock Select CLKSEL C26h CLKTIMER[CLKTEST] pin enable, clock output
select options (18.432 MHz or 1.8432 MHz
UART, PLL1, PLL2, PIT, and RTC), CLKTIMER
or CLKTEST select
GP Timer 0 Mode/Control GPTMROCTL C72h GP Timer O: internal clock source prescaler,
external clock source
GP Timer 1 Mode/Control GPTMR1CTL C7Ah GP Timer 1: internal clock source prescaler,
external clock source
UART 1 General Control UART1CTL CCO0h, CC4h | UARTX clock source: 1.8432 MHz or 18.432
UART 2 General Control UART2CTL MHz
SSI Control SSICTL CDOh SSi clock speed
GP-DMA Control GPDMACTL D80h GP-DMA clock frequency: 4 MHz, 8 MHz, or 16
MHz

5-6

Elan™SC520 Microcontroller User’s Manual

Clock Generation and Control AMD:'

5.5

5.5.1
5.5.1.1

5.5.1.2

5.5.1.3

5.5.1.4

5.5.1.5

OPERATION
The clocks on the ElanSC520 microcontroller are generated from two local oscillators.
The 32.768-kHz oscillator is used to drive PLL1 (1.47456-MHz PLL), which in turn drives

PLL2 (36.864-MHz PLL). The 36.864-MHz clock is divided by 2 to produce the 18.432-MHz
UART clock. It is divided by 31 to produce the 1.1892-MHz PIT clock.

The 33-MHz oscillator produces the 33-MHz PCI and CPU clocks. The 33-MHz oscillator
is also used to drive PLL3 (66-MHz PLL) to produce the SDRAM clock.

Internal Clocks

CPU

The Am5,86 CPU bus frequency in the ElanSC520 microcontroller is always 33 MHz;
however, the Am5,86 CPU core frequency is programmable to be 100 MHz or 133 MHz.
The clock speed of the Am5,86 CPU core defaults to 100 MHz, but can be changed
dynamically via the Am5,86 CPU Control (CPUCTL) register (MMCR offset 02h). Clocking
considerations for the Am5,86 CPU are described in “Clocking Considerations” on

page 7-4.

The ElanSC520 microcontroller supports either a 33.000-MHz or 33.333-MHz crystal as
the 33-MHz clock source.

PCI Bus

The PCI bus system clock on the ElanSC520 microcontroller runs at 33 MHz. The PCI bus
system clock (CLK) is described in “PCI Clocking” on page 9-5, as is usage of the two PCI
bus clock pins, CLKPCIIN and CLKPCIOUT.

The CLKPCIOUT pinis a 33-MHz clock output for the PCI bus devices. This signal is derived
from the 33MXTAL2-33MXTAL1 interface.

Note that the ElanSC520 microcontroller supports either a 33.000-MHz or 33.333-MHz
crystal. “Running the Elan™SC520 Microcontroller at 33.333 MHz” on page 5-5 details
some important considerations in choosing a crystal for a PCI system.

SDRAM Controller

The SDRAM clock runs at 66 MHz, twice the frequency of the 33-MHz oscillator. The refresh
rate of the SDRAM controller is derived from the 32.768-kHz clock. The flexible refresh rate
supports a wide variety of devices.

Clocking considerations for the SDRAM controller, including the CLKMEMIN and
CLKMEMOUT pins, are described in “SDRAM Clocking” on page 10-6.

ROM/Flash Interface

The ROM/Flash controller is clocked from the internal Am5,86 CPU bus and operates at
33 MHz.

GP Bus
The GP-bus interfaces internally to the Am5,86 CPU and operates at 33 MHz.

Elan™SC520 Microcontroller User’s Manual 5-7

AMDZ\

Clock Generation and Control

5.5.1.6

5.5.1.7

5.5.1.8

5.5.1.9

5.5.1.10

5.5.1.11

5.5.1.12

5.5.1.13

GP-DMA Controller

The GP-DMA controller can be programmed to operate at 4 MHz, 8 MHz, or 16 MHz. This
option is specified in the GP-DMA Control (GPDMACTL) register (MMCR offset D80h).
Note that these frequencies are derived from the 33-MHz clock. The exact frequency is an
even fraction of the crystal (33.000-MHz or 33.333-MH2z) being used in the system.

Programmable Interval Timer

The programmable interval timer (PIT) clock source can be either the derived 1.1892-MHz
PIT clock or the CLKTIMER pin.

Note: Sincethe PIT clock does notrun atthe industry-standard 1.19318 MHz, modifications
in software must be made to allow for this difference. See “Using the PIT Clock Source in
PC/AT-Compatible Systems” on page 16-6 for more information.

General-Purpose Timers

The clock source for the three general-purpose timers is the 33-MHz clock. For Timer 0
and Timer 1, the clock source can also be an external pin or a derived prescale clock. This
option is specified in the GP Timer 0 Mode/Control (GPTMROCTL) register (MMCR offset
C72h) and the GP Timer 1 Mode/Control (GPTMR1CTL) register (MMCR offset C7Ah).
Clocking considerations for the general-purpose timers are described in “Clocking
Considerations” on page 17-5.

Software Timer

The software timer uses the 33-MHz clock. Proper configuration of the software timer
requires the programmer to specify in the Software Timer Configuration (SWTMRCFG)
register (MMCR offset C64h) whether a 33.000-MHz or 33.333-MHz crystal is being used
in the system.

Watchdog Timer

The watchdog timer uses the 33-MHz clock. It supports up to a 30-second time-out period.
The EXP_SEL field in the Watchdog Timer Control (WDTMRCTL) register (MMCR offset
CBOh) indicates the exponent value used to calculate the time-out duration.

Real-Time Clock

The 32KXTAL2—-32KXTAL1 pins are used to connect the external 32.768-kHz crystal or
oscillator to the ElanSC520 microcontroller. This clock source is then used to clock the
internal real-time clock (RTC) included on the ElanSC520 microcontroller.

UART Serial Ports

The UARTS each support an internal baud-rate clock of either 18.432 MHz or 1.8432 MHz.
This frequency is programmed in the CLK_SRC bit in the UART 1 General Control
(UARTLCTL) register (MMCR offset CCOh) or the UART 2 General Control (UART2CTL)
register (MMCR offset CC4h).

Synchronous Serial Interface

The synchronous serial interface (SSI) clock is derived from the 33-MHz clock. The
CLK_SEL bitinthe SSI Control (SSICTL) register (MMCR offset CDOh) is used to configure
the frequency of the SSI clock (the SSI_CLK pin). The actual bit rate will vary, depending
on whether the system is using a 33.000-MHz or a 33.333-MHz crystal.

5-8

Elan™SC520 Microcontroller User’s Manual

Clock Generation and Control AMD:'

5.5.2

Using the CLKTIMER[CLKTEST] Pin

The CLKTIMER[CLKTEST] pin can be programmed as an input (CLKTIMER) or as an
output (CLKTEST) in the Clock Select (CLKSEL) register (MMCR offset C26h).

m When programmed as an input (default), this pin can be used to provide the clock for
the programmable interval timer (PIT) core. See “Using the PIT Clock Source in PC/AT-
Compatible Systems” on page 16-6 for more information. While the pin is being enabled
as an input, itis synchronized to the CPU clock to prevent spurious pulses from occurring
in the PIT core.

m When programmed as an output, this pin, as CLKTEST, can drive one of several of the
internal clocks outside the microcontroller for testing or drive an external device.
Figure 5-5 shows the available clocks that can be directed to the CLKTEST pin by
programming the Clock Select (CLKSEL) register (MMCR offset C26h).

Note: Caution should be exercised when programming the CLKTIMER[CLKTEST] pin as
an output, since there is no logic to avoid spurious pulses while enabling or changing clock
frequencies. The target device should be held in reset, the CLK_TST_SEL bit field
programmed to the correct frequency, the CLK_PIN_DIR bit set to 1 (output), and the
CLK _PIN_ENB bit set to 1 (enabled). Then, the target device can be released from reset.

Figure 5-5

Clock Routing for the CLKTEST Pin

UART (1.8432 MHz) \

UART (18.432 MHz)

PLL1 (1.47456 MHz)

CLKTEST R

PLL2 (36.864 MHz) 6:1 Mux

PIT (1.1892 MHz)

RTC (32.768 kHz)

|

CLK_TST_SEL bits from the Clock Select Register

5.6

INITIALIZATION

The Am5,86 CPU core is reset during a system reset, and the CPU core clock frequency
defaults to 100 MHz. A soft reset does not affect the CPU core clock frequency.

The CLKTIMER[CLKTEST] pin is disabled on reset and must be enabled via the Clock
Select (CLKSEL) register (MMCR offset C26h) before it will function.

See Figure 5-1 on page 5-2 and Table 5-1 on page 5-2 for start-up information. See also
Figure 6-3 on page 6-9 and the reset timing diagrams in the E/lan™SC520 Microcontroller
Data Sheet, order #22003.

Elan™SC520 Microcontroller User’s Manual 5-9

AMDﬂ Clock Generation and Control

5-10 Elan™SC520 Microcontroller User’s Manual

6 RESET GENERATION

AMDA

6.1

6.2

OVERVIEW
Reset features of the ElanSC520 microcontroller include:

ElanSC520 microcontroller system reset generation via PWRGOOD pin, software
writes, watchdog timer, and AMDebug system reset

ElanSC520 microcontroller system reset with SDRAM interface contents maintained
(called programmable reset)

Hard CPU reset generation via system reset

Soft CPU reset generation via software writes and detection of the CPU special cycle
type “shutdown”

GP bus reset generation via system reset and software writes

PCI bus reset generation via system reset and software writes. See Chapter 9, “PCI Bus
Host Bridge”

Reset sources can be determined by software

Latches system-configuration data presented on the shared CFG3—CFGO pins and static
system board information presented on the shared RSTLD7—-RSTLDO pins at the
assertion of the PWRGOOD pin. See Chapter 12, “ROM/Flash Controller”, for
information in the CFGx pins.

System Control Processor (SCP) A20 gate and reset CPU command emulation

Control bit to enable AMDebug mode after the CPU has been reset

BLOCK DIAGRAM
Figure 6-1 shows a block diagram of the reset controller.

Elan™SC520 Microcontroller User’s Manual 6-1

AMDﬂ Reset Generation

Figure 6-1 Reset Controller Block Diagram

Elan™SC520 Microcontroller

Reset Controller

GPRESET
PWRGOOD >
» Reset Configuration DEBUG_ENTER
PRGRESET N Register) INST_TRCE
AMDEB DI
port92_rst < UG_DIS
Port A a20 ctl Pinstrap < CFG3-CFGO0
Status
GP Bus scp 220 gae and P RSTLD7-RSTLDO
44— Registers port64_rst Reset System b
S .
Source Information ROM
Detect rom Controller
config
< rst main Controller »
AMDebug™ AMDebug on reset — > -
< To all internal
. AMDebug hard reset
Logic g - cores
AMDebug system reset
> cpu reset
Watchdog wdt_rst - cpu sreset d
Timer 220m | cpu

shutdown

v

6.3

SYSTEM DESIGN

The POWERGOOD signal from the system board is connected to the PWRGOOD pin on

the ElanSC520 microcontroller to produce CPU reset and system reset events. During the
period required for stabilization of the power supplies and the internal oscillators, which is
typically not less than 1 second, the POWERGOOD signal is kept deasserted. The start-

up time of the internal PLLs is typically 10 ms from the assertion of the PWRGOOQOD pin.

The power-on reset waveform diagram is shown in Figure 6-3 on page 6-9.

All system resets, aside from PWRGOOD pin, are on the order of 10 ms, while soft resets

take 16 CPU clocks.

See the Elan™SC520 Microcontroller Data Sheet, order #22003, for timing tables and

additional timing diagrams.

6-2

Elan™SC520 Microcontroller User’s Manual

Reset Generation

AMDA

6.4 REGISTERS
The reset generation on the ElanSC520 microcontroller is controlled by the memory-
mapped registers listed in Table 6-1 and the direct-mapped registers listed in Table 6-2.
Table 6-1 Reset Generation Registers—Memory-Mapped
MMCR
Offset

Register Mnemonic Address Function

Host Bridge Control HBCTL 60h PCl reset (RST)

Watchdog Timer Control WDTMRCTL CBOh Watchdog timer enable, WDT reset enable,
interrupt flag, duration of the WDT time-out
interval

System Board Information SYSINFO D70h System configuration data latched on RSTLD7—-
RSTLDO pins at assertion of PWRGOOD

Reset Configuration RESCFG D72h Control bits for system reset, GP bus reset
(GPRESET), programmable SDRAM retention
reset (PRGRESET pin enable), and AMDebug
mode enable

Reset Status RESSTA D74h Reset source status: SCP reset, AMDebug hard

reset detect, AMDebug system reset, watchdog
timer time-out, CPU shutdown (soft reset),
PRGRESET pin, and PWRGOOD pin

Table 6-2 Reset Generation Registers—Direct-Mapped
Register Mnemonic I/0 Address | Function
SCP Data Port SCPDATA 60h System Control Processor (SCP) datawrite, a20
gate command emulation
SCP Command Port SCPCMD 64h SCP command write, a20 gate command
emulation, CPU reset command emulation
System Control Port A SYSCTLA 92h Soft CPU reset generation, alternate a20 control
6.5 OPERATION

There are several different types of reset supported on the ElanSC520 microcontroller:

m System reset

m System reset with SDRAM retention, called programmable reset

m Soft CPU reset
m GP bus reset
m PCl reset

m RTC reset

System reset is the primary reference reset on the ElanSC520 microcontroller. It is

described in “System Reset” on page 6-4.

Table 6-3 shows the ElanSC520 microcontroller reset sources and the functions affected.

Elan™SC520 Microcontroller User’s Manual

6-3

AMDﬂ Reset Generation

Table 6-3 Elan™SC520 Microcontroller Reset Sources
CPU GPRESET | RSTPin | Internal
Source (Hard/Soft) Pin (PCI) Registers | Notes
PWRGOOD pin Hard O O O
PRGRESET pin Hard d a g 12
SYS_RST bit, RESCFG register Hard O O O 2
Watchdog timer reset event Hard O O O 2
AMDebug system reset Hard O O O 2
CPU_RST bit, SYSCTLA register (Port 0092h) Soft 3
SCP soft reset, SCPCMD register (Port 0064h) Soft
CPU shutdown (typically caused by a triple fault) Soft
GP_RST bit, RESCFG register O
PCI_RST bit, HBCTL register O
Notes:

1. The PRG_RST_ENB bit must be set to enable the reset function on this pin.

2. Ifthe PRG_RST_ENB bit is set, the SDRAM controller configuration is maintained to support system reset in which
SDRAM contents are also maintained.

3. Any write of a 1 to the CPU_RST bit will cause a soft reset, regardless if the bit was previously a 1 or 0.

6.5.1 System Reset

System reset on the ElanSC520 microcontroller can be initiated by any of the following
reset events:

m PWRGOOD pin assertion

m Software writes to the SYS_RST bit in the Reset Configuration (RESCFG) register
(MMCR offset D72h)

m AMDebug system reset event

m Watchdog timer time-out event that is enabled to generate a system reset
On system reset, the following sequence of events occurs.

1. A system reset event is asserted.

2. Internal CPU, ElanSC520 microcontroller internal registers, system GP bus, and PCI
bus resets are asserted.

3. The system reset event is deasserted. If PWRGOOD was the source of the reset,
configuration and system board data are latched on the CFG3—-CFGO0 and RSTLD7-
RSTLDO pins, respectively.

4. An RTC reset is generated if the RTC voltage monitor has detected a low RTC battery
condition and the system reset source was PWRGOOD.

5. Internal PLL start-up time is allowed to pass.
6. Internal CPU, system GP bus, and PCI bus resets are deasserted.

The duration of the system reset is on the order of 10 ms, the start-up time of the internal
PLLs. The GPRESET and RST pins are asserted for the 10-ms interval.

6-4 Elan™SC520 Microcontroller User’s Manual

Reset Generation AMD:'

In response to the hard CPU reset, all internal Am5,86 CPU registers return to their reset
state, and the contents of the CPU cache are discarded. For further information on hard
CPU reset, see the Am486% DX/DX2 Microprocessor Hardware Reference Manual, 1994
(order #17965).

Note: The CFG3—-CFGO and RSTLD7-RSTLDO pins are latched only as a result of the
assertion of the PWRGOOD signal, and not as a result of the SYS_RST bit, AMDebug
system reset event, or watchdog timer event.

If the ICE_ON_RST bit in the Reset Configuration (RESCFG) register is set to a 1, the
AMDebug utility enters into AMDebug mode after system reset.

The states of the ElanSC520 microcontroller cores after system reset are shown in
Table 6-4. See the “Initialization” section at the end of each chapter for more detailed
information.

Table 6-4 States of Cores after System Reset
Core State Comment
Amb5,86 CPU Enabled CPU clock frequency is set to 100 MHz. Internal

registers and internal cache are reset. The FPU
must be initialized with an FNINIT instruction.

System arbiter

Enabled Default is nonconcurrent arbitration mode. All bus
masters are disabled except the CPU as PCl and
internal Am5,86 CPU bus master.

PCI host bridge master controller Enabled

PCI host bridge target controller Disabled

SDRAM controller Disabled No banks are enabled.

Write buffer and read buffer Disabled

ROM controller Enabled BOOTCS (only) is enabled at system reset

GP bus controller Enabled iliﬁzir;zld.GP bus is disabled until PAR registers are
GP-DMA controller Enabled All channels are masked off.

Programmable interrupt controller Interrupts are masked at the CPU. NMls are
(PIC) Enabled disabled.

Software timer Enabled

General-purpose (GP) timers Disabled AllGP timer registers are resetto 0. Each timer must

be programmed before it can be used.

Programmable interval timer (PIT) Disabled

Each PIT channel must be programmed before it

can be used.
Watchdog timer (WDT) Disabled
Real-time clock (RTC) Enabled
UARTs Disabled
Synchronous serial interface (SSI) Disabled Inactive until an SSI command is written.
P.rogrammable input/output (P10) Enabled All PI_O pins default to inputs and to their PIO
pins function.
JTAG test access port (TAP) Enabled ‘;E:UG@Tnz?n:;hg;ga?iir?_sserted active Low to
AMDebug mode Enabled If the ICE_ON_RST bit in the Reset Configuration

(RESCFGQG) register is set.

Elan™SC520 Microcontroller User’s Manual 6-5

AMDZ\

Reset Generation

6.5.2

System reset is a subset of the power-on reset sequence described in “Initialization” on
page 6-9.The only real difference between the two is that, for power-on reset, power is
being applied to the part in addition to the reset, and the stabilization of power supplies to
deassertion of the reset is specified. The two terms are otherwise synonymous in this
document.

System Reset with SDRAM Retention

The ElanSC520 microcontroller is capable of performing a system reset in which the
contents of the SDRAM system are maintained.

This function, called programmable reset, is enabled via the PRG_RST_ENB bit in the
Reset Configuration (RESCFG) register (MMCR offset D72h). If this bit is set, assertion of
the PRGRESET pin, SYS_RST bit, watchdog timer system reset event, or AMDebug system
reset event while PWRGOOD is asserted will result in a system reset in which the SDRAM
configuration (SDRAM type, number of banks, refresh rate, etc.) is maintained so that the
contents of SDRAM are preserved.

Although the CFG3-CFGO0 and RSTLD7-RSTLDO pins are not latched, all other aspects
of this type of reset are the same as a system reset.

The system reset request is arbitrated with the internal SDRAM controller to ensure that
all SDRAM banks are idle prior to assertion of the reset. In addition, this arbitration allows
the SDRAM controller to complete the current SDRAM cycle. Figure 6-2 shows the
sequence of events following a PRGRESET assertion with the PRG_RST_ENB bit enabled.

Note: If a system reset request is not acknowledged by the SDRAM controller when the
PRG_RST_ENB configuration bit is set, a normal system reset occurs. In this event, the
PRG_RST_ENB bitis cleared. Clearing of the PRG_RST_ENB bit indicates that the
contents of the SDRAM were not maintained.

Figure 6-2

PRGRESET /

cpu reset

GPRESET /

Notes:

RST \

PRGRESET Timing

‘ >
>

1rr (

1. Reset assertion from PRGRESET assertion is approximately 32 CPU clocks. All SDRAM banks are idle.
2. The PRG_RST_ENB bit in the Reset Configuration (RESCFG) register must be enabled.
3. The signal “cpu reset” is an internal signal, shown here for reference only. It is not available as an external pin.

6-6

Elan™SC520 Microcontroller User’s Manual

Reset Generation AMD:'

6.5.3

6.5.4

6.5.5

6.5.6

Soft CPU Reset

A soft CPU reset is differentiated from a hard CPU reset in that soft CPU reset does not
affect the CPU'’s cache state. See “Initialization” on page 7-5 for more information about
the differences between hard and soft CPU reset.

A soft CPU reset does not reset the ElanSC520 microcontroller’s internal register bits, with
the exception of the NMI_ENB bit in the Interrupt Control (PICICR) register (MMCR offset
D0O0h). A soft CPU reset does not assert the GPRESET or RST pins. For a soft CPU reset,
the CPU’s internal sreset signal is asserted for 16 clock cycles.

There are four ways a soft CPU reset is generated on the ElanSC520 microcontroller:

m A software write to the CPU_RST bit of System Control Port A (SYSCTLA) register (Port
0092h)—Writing a 1 to this bit generates a soft reset event. Following this reset, the
CPU_RST bit remains set until software clears it. This feature can be used by software
as anindicationthatthe System Control Port A (SYSCTLA) register was used to generate
the reset. Writing a 1 to the CPU_RST bit always generates a soft reset, even if the bit
was not cleared after a previous reset.

m SCP Reset CPU command—A soft reset event is asserted when the CPU issues the
standard command write of FEh to the SCP Command Port (SCPCMD) register (Port
0064h).

m Triple bus fault—A soft reset event is asserted in response to a CPU shutdown cycle
due to a triple bus fault.

m Entering AMDebug mode—A soft reset event is also asserted in response to a soft reset
command from the AMDebug utility. If the ICE_ON_RST bit in the Reset Configuration
(RESCFG) register (MMCR offset D72h) is set to a 1, the AMDebug utility enters into
AMDebug mode after a soft CPU reset.

GP Bus Reset

GP bus reset can be generated via a system reset or a software write. Writing a 1 to the
GP_RST bit in the Reset Configuration (RESCFG) register (MMCR offset D72h) asserts
the GPRESET pin. Clearing this bit to 0 deasserts the GPRESET pin.

PCI Reset

The PCl reset signal, RST, is generated via a system reset or software writes. Writing a 1
to the PCI_RST bit in the Host Bridge Control (HBCTL) register (MMCR offset 60h) asserts
the PCI RST pin. Clearing this bit to 0 deasserts the PCI RST pin.

RTC Reset

RTC reset occurs anytime the BBATSEN input is sampled below 2.0 V during a power-on
reset or during a system reset where the reset source was PWRGOOD. RTC Status D
(RTCSTAD) register (RTC index ODh) includes a status bit that indicates the validity of the
contents of the RAM, time registers, and the calendar. The RTC_VRT bit is set based on
the assertion of the internal RTC reset.

Note that this RTC reset may or may not occur when a system reset occurs, depending on
the reset source and the state of BBATSEN. BBATSEN also provides a reset signal for the
RTC when an RTC backup battery is applied for the first time.

Elan™SC520 Microcontroller User’s Manual 6-7

AMDZ\

Reset Generation

6.5.7

6.5.8

6.5.9

6.5.10

Determining Reset Sources

Status bits are available in the Reset Status (RESSTA) register (MMCR offset D74h) for
software to determine the source of reset. These bits are set when the associated event is
detected and cleared by writing a 1. They include:

m ICE_HRST_DET—Hard CPU reset from AMDebug logic
m ICE_SRST_DET—AMDebug system reset
m WDT_RST_DET—Watchdog timer time-out system reset

m SD_RST_DET—Soft CPU reset resulting from a detection of the CPU shutdown cycle
due to triple fault

m PRGRST_DET—System reset from PRGRESET pin that resets the ElanSC520
microcontroller, allows SDRAM refresh, and maintains SDRAM configuration

m PWRGOOD_DET—System reset from PWRGOOD pin

CPU A20 Gate Support

The ElanSC520 microcontroller does not support an a20 gate input pin. In a typical PC/AT
system, this input was driven by the external System Control Processor (SCP) in response
to a command request that is issued by the main CPU. In the ElanSC520 microcontroller,
this a20 gate command sequence is detected by internal logic, and the appropriate action
is taken.The ElanSC520 microcontroller provides an additional a20 gate source in the
System Control Port A (SYSCTLA) register (Port 0092h). These two a20 gate sources are
logically ORed such that both sources must be deasserted to cause the CPU’s a20 output
to be gated Low.

The SCP a20 gate command is detected when the CPU issues the standard command
write of D1h to the SCP Command Port (SCPCMD) register (Port 0064h), followed by a
data write to the SCP Data Port (SCPDATA) register (Port 0060h). Bit 1 of the write to the
SCP Data Port (SCPDATA) register drives the a20 control logic. A value of 1 allows the
CPU’s a20 signal to propagate to the core logic, while a value of 0 allows the CPU’s a20
signal to be driven Low, as long as no other a20 gate control sources are forcing the CPU’s
a20 signal to propagate.

In addition to the SCP a20 gate command emulation, the A20G_CTL bit in the System
Control Port A (SYSCTLA) register (Port 0092h) can also be used for alternate a20 signal
control. Setting the A20G_CTL bit allows the CPU’s a20 signal to be propagated to the
system logic. Clearing this bit (default state) allows the a20 signal to be driven Low as long
as no other a20 gate control sources are forcing the a20 signal to propagate.

Clocking Considerations
As a result of an ElanSC520 microcontroller system reset event, the internal PLLs are re-
started. The PLL start-up time from the deassertion of the system reset source is 10 ms.

Software Considerations

The CPU cache, SDRAM controller write buffer, and PCI transaction queues are discarded
as a result of a system reset.

6-8

Elan™SC520 Microcontroller User’s Manual

Reset Generation AMD:'

6.5.11 Latency
PRGRESET events must be arbitrated in the SDRAM controller to ensure that the SDRAM
devices are in a state in which data is not lost when the PRGRESET event is propagated.
This arbitration causes the PRGRESET event to be delayed by no more than 32 CPU clock
periods prior to assertion of the internal and external reset signals.
6.6 INITIALIZATION
At power-on reset for the ElanSC520 microcontroller, the following sequence of events
occurs.
1. The PWRGOOD pin is deasserted.
2. The power planes come up.
3. Internal CPU, ElanSC520 microcontroller internal registers, system GP bus, and PCI
bus resets are asserted.
4. PWRGOOD is asserted. Configuration and system board data are latched on the CFG3—
CFGO and RSTLD7-RSTLDO pins, respectively.
5. RTCreset eventis generated if the RTC voltage monitor has detected a low RTC battery
condition.
6. Internal PLLs are enabled and clocks become stable (internal PLL startup time is allowed
to pass).
7. Internal CPU, system GP bus, and PCI bus resets are deasserted.
Figure 6-3 shows this sequence. For power-on reset, the PWRGOOD pin must be held
deasserted for the duration of time it takes for the stabilization of the system board power
supply output voltages and the start-up time of the internal 32-kHz and 33-MHz oscillators.
This time is typically on the order of 1 second.
Figure 6-3 Power-On Reset Sequence of Events
ALL Vccs
L
PWRGOOD /
PRGRESET
3——
Cpu reset
GPRESET \
RST
CFG3-CFGO0 (CValid)
RSTLD7-RSTLDO (Valid)
L2
Internal Clocks SAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAN
Notes:

1. PWRGOOD valid from all V- valid (except VCC_RTC) is typically 1 second.

2. PLL start-up time from PWRGOOD valid is less than 10 ms.
3. CPU reset and external resets deasserted from PWRGOOD are 10 ms.
4. Internal signals are shown for reference only; they are not available on external pins.

Elan™SC520 Microcontroller User’s Manual 6-9

AMDﬂ Reset Generation

6-10 Elan™SC520 Microcontroller User’s Manual

7 Am5,86° CPU

AMDA

7.1 OVERVIEW
The ElanSC520 microcontroller has an integrated Am5,86 CPU core. The features of the
Am5,86 CPU include:
m Operation at 100 MHz or 133 MHz, with a 33-MHz bus interface
m 16-Kbyte unified cache configurable for either write-back or write-through cache mode
m Integrated floating point unit (ANSI/IEEE 754 compliant)
m On-chip debug support. See Chapter 26, “AMDebug™ Technology”, for more
information.
7.2 BLOCK DIAGRAM
Figure 7-1 shows a block diagram of the Am5,86 CPU.
7.3 REGISTERS
The Am5,86 CPU is controlled by the registers listed in Table 7-1 and Table 7-2.
Table 7-1 Am5,86® CPU Registers—Memory-Mapped
MMCR
Offset
Register Mnemonic Address Function
ElanSC520 Microcontroller | REVID 00h Product identification, major and minor stepping
Revision ID level
Amb5,86 CPU Control CPUCTL 02h CPU cache mode (write-through or write-back),
CPU clock speed control
Floating Point Error Interrupt | FERRMAP D46h Floating point error interrupt mapping
Mapping
Reset Status RESSTA D74h Reset source status: CPU shutdown (soft reset)

Table 7-2 Am5,86® CPU Registers—Direct-Mapped

Register Mnemonic I/0 Address | Function

SCP Data Port SCPDATA 60h System Control Processor (SCP) data write, a20
gate command emulation

SCP Command Port SCPCMD 64h SCP command write, a20 gate command
emulation, CPU reset command emulation

System Control Port A SYSCTLA 92h CPU soft reset generation, alternate a20 control

Floating Point Error Interrupt | FPUERRCLR FOh Clear FPU error interrupt

Clear

Elan™SC520 Microcontroller User’s Manual 7-1

Am5,86° CPU

AMDZ\

Am5,86® CPU Block Diagram

Figure 7-1

SNL_9VIC

oal ovir JOVHL/OIEL
IaL_ovir MOVAND
MOL OvIC o1/49

1SHL ovir ﬁ ﬂ X1/dO1S

Am5,86® CPU Bus

AUl ‘'spes
‘ysny ‘usy

|

sreubis
|jonuod

099-€99
ce-ige

nn
uoneisuso
%9010

j0Iu0D
ayoed

|0JU0D sng

Slanlgasuel]
sng ereq

sialng

SIaALQ ANMTV

SsalIppy

aoelal|
sng

10]RIBUDD

23010
210D

|03u05 21607
ueas :
Arepunog wiBngaany
WON 94
01000 1a1s169y <+—
yred Ndd
uononJasuj
papodag
8poded —— - NunIsaL nun
vz uononJsu| uooaloid juiod <4+
salkg 9T X |\IV pue [enua) Buireol4
anand apod cwwwhwm
alkg-ze
Il UOIONAISUI-00IN
18ydisyald ze! sng juawaoe|dsiq
8¢T H
v
ze Jayng Vid
ssoIpy apISy-X4007] anguny niv
uone[suel ue jwi
ayoe)d (BoISAL ejsuel] pue nwi
€ aax-9T 0z sia1s16ay 2
3|14 Ja1sibay
i Jo1duosaq
e,ma pad | nun Buibed " sng
nun ayoed AlT co_ﬂmwcmﬁcmmm Xapu| | JoUIYS [airegd
N : Joseg
*Nm / + * 4 4
' sng ssaippy Jeaur]
sng ereq ng-ze \A
sng eleq 1g-
£ET/00T 8 eequaes \4
> sng Jajsuel] Junisul Hg-v9
42010
310D NdO @98*swy

19]|02UOD0IIIN 0ZSGDS i Ue|T

Elan™SC520 Microcontroller User's Manual

7-2

Am5,86° CPU AMDAQ

7.4

7.4.1

OPERATION

The ElanSC520 microcontroller is a highly integrated system in silicon, and the Am5,86
CPU is central to this integration. The Am5,86 CPU is a high-performance CPU that is fully
software-compatible with the Am486 microprocessor family. Most of the details of the
communication between the Am5,86 CPU core and the peripherals are transparent to the
user and are not documented here.

A full description of the operation of the Am5,86 CPU is well beyond the scope of this
chapter. The following AMD publications are a good starting point for learning about the
Am5,86 CPU as it has evolved over time. The oldest publication is listed first. The later
publications enhance the original functional descriptions.

m Am486%° DX/DX2 Microprocessor Hardware Reference Manual, 1994 (order #17965)
m Enhanced Am486® Microprocessor Family Data Sheet, 1995, (order #19225)
m Am5,86® Microprocessor Family Data Sheet, 1996 (order #19751)

The Am5,86 CPU core in the ElanSC520 microcontroller is derived from the Enhanced
Am486 family (as described in order #19225). The Am5,86 CPU enhances system
performance by raising the maximum CPU operating frequency to 133 MHz, while
maintaining complete compatibility with the standard Am486 CPU architecture. The
following differences may be relevant to the user:

m Thereis no provision for an L2 cache. The signals that would be needed are not brought
out of the ElanSC520 microcontroller.

m System management mode (SMM) is not supported on the ElanSC520 microcontroller.

m From an Am5,86 CPU-core perspective only, the cache defaults to the write-back cache

mode and reports this state in response to the CPUID instruction. The cache mode can
be reconfigured to write-through mode via the Am5,86 CPU Control (CPUCTL) register

(MMCR offset 02h).

Programs sometimes require the ability to determine the hardware on which they are
running. The ElanSC520 microcontroller can be identified via the CPUID instruction and
the ElanSC520 Microcontroller Revision ID (REVID) register (MMCR offset 00h). This is
discussed in “ldentifying the CPU Core” on page 3-7.

Floating Point Unit (FPU)

The Am5,86 CPU provides an integrated floating point unit (FPU) that operates in parallel
with the Arithmetic Logic Unit (ALU). The FPU is useful in applications that involve more
intensive computational complexity. The major features of the integrated FPU are:

m Compliant with ANSI/IEEE 754 standard
m Provides arithmetic instructions to handle various numeric data types and formats

m Provides built-in transcendental functions for functions like sine, cosine, tangent,
logarithms, etc.

m Software-compatible with the 80387 (and previous) math co-processors

The FPU must be initialized with an FNINIT instruction after any system reset.

Elan™SC520 Microcontroller User’s Manual 7-3

AMDZ\

Am5,86° CPU

7.4.2

Cache Memory Management

The ElanSC520 microcontroller contains a 16-Kbyte unified code and data cache. Cache
operation defaults to write-back cache mode. However, this mode can be disabled by setting
the Cache Write Mode (CACHE_WR_MODE) bit in the Am5,86 CPU Control register
(MMCR offset 02h). Note that the cache should be flushed when switching this bit from
write-back to write-through cache mode.

The cache that is internal to the CPU is historically referred to as the level 1 (L1) cache.
Cache that is located external to the CPU is called level 2 (L2). The ElanSC520
microcontroller does not have the control mechanism or the pins to support an L2 cache.
The L1 cache can be configured through the standard cache configuration bits in the CPU’s
machine status (CRO) register. The Cache Disable (CD) and Not Write-Through (NW) bits
are decoded as shown in Table 7-3.

Table 7-3

7.4.3

Cache Configuration Options

CD NW | Operating Mode

1 1 Cache line fills, cache write-throughs, and cache invalidations are disabled. To
completely disable the cache, set both CD and NW to 1 and flush the cache by
executing a WBINVD or INVD instruction.

1 0 Cache line fills are disabled. Cache write-throughs and cache invalidations are
enabled. This configuration allows software to disable the cache for a short time,
then re-enable it without flushing the original contents.

0 1 Invalid setting. A general-protection exception with an error code of 0 is generated.

0 0 Cache line fills, cache write-throughs, and cache invalidations are enabled. This
is the normal operating configuration.

If paging is enabled in the CPU, then cacheability as well as cache write policy can be
controlled on a per-page basis via control bits in the page tables. Note that the
CACHE_WR_MODE bit in the Am5,86 CPU Control (CPUCTL) register must be set to
write-back cache mode for write-back behavior to occur.

Caching is controlled by the memory management subsystem on a per-access basis. For
example, GP bus and PCI bus accesses are not cached. The programmer has control over
which regions of memory (SDRAM and ROM) are cacheable and which are not. This is
described in detail in Chapter 4, “System Address Mapping”.

Clocking Considerations

The Am5,86 CPU bus frequency in the ElanSC520 microcontroller is always 33 MHz.
However, the Am5,86 CPU core frequency is programmable to be 100 MHz or 133 MHz.
The clock speed of the Am5,86 CPU core defaults to 100 MHz, but can be changed
dynamically via the Am5,86 CPU Control (CPUCTL) register (MMCR offset 02h). Systems
that maintain relatively high cache hit rates benefit more from the higher core speeds,
because they are not dependent on external bus activity for accessing ROM or SDRAM.

The clock speed change is transparent to the system, with the exception that there is
approximately 1-ms delay to allow the Am5,86 CPU'’s clock PLLs to stabilize. Following the
clock speed configuration, the ElanSC520 microcontroller’s clock control logic automatically
forces the Am5,86 CPU’s cache to be flushed, and waits for the completion of the flush
before changing the PLLs’ frequency select (caching is also disabled for any subsequent
memory read cycles during the flush operation). Since the CPU PLLs require approximately
1 msto stabilize following the speed change, all Am5,86 CPU cache snooping is suspended.
However, since the cache was previously flushed, there are no coherency issues, PCI bus

7-4

Elan™SC520 Microcontroller User’s Manual

Am5,86° CPU AMDAQ

7.4.4

7.4.5

7.5

7.5.1

7.5.2

master cycles, or GP-DMA controller operations during this period. Interrupts generated to
the Am5,86 CPU will be honored only after the Am5,86 CPU is operating again.

Once the CPU PLLs have stabilized and the new core frequency has been established,
caching is once again enabled in the same mode as it was prior to the clock speed change.
There are no special requirements by external system hardware or software to support
clock speed switching.

Note: Not all ElanSC520 microcontroller devices support all CPU clock rates. The
maximum supported clock rate for a device is indicated by the part number printed on the
package. The clocking circuitry can be programmed to run the device at higher than rated
speeds. However, if an ElanSC520 microcontroller is programmed to run at a higher clock
speed than that for which it is rated, then erroneous operation will result and physical
damage to the device may occur.

Interrupts

The Am5,86 CPU receives a maskable interrupt from the programmable interrupt controller
(PIC). The Am5,86 CPU also supports a non-maskable interrupt (NMI) input that can be
disabled. See Chapter 15, “Programmable Interrupt Controller”, for details of both maskable
and non-maskable interrupt sources and routing.

Latency

The clock speed change is transparent to the system with the exception that there is
approximately a 1-ms delay to allow the Am5,86 CPU'’s clock PLLs to stabilize. Interrupts
generated to the Am5,86 CPU will be honored only after the Am5,86 CPU is operating
again.

INITIALIZATION

The Am5,86 CPU included on the ElanSC520 microcontroller supports two different types
of CPU reset: hard CPU reset and soft CPU reset. Chapter 6, “Reset Generation” provides
details of the various sources of hard and soft reset to the Am5,86 CPU. For additional
information on Am5,86 CPU initialization, see Chapter 3, “System Initialization” and the
references provided in “Operation” on page 7-3.

Hard CPU Reset

The Am5,86 CPU is reset during a hard CPU reset, and the Am5,86 CPU core clock
frequency defaults to 100 MHz. Hard CPU reset is used to initialize the Am5,86 CPU due
to deassertion of the PWRGOOD signal, as well as other reset sources (see Table 6-3 on
page 6-4). Hard CPU reset resets Am5,86 CPU registers and the internal cache.

Hard CPU reset forces the microprocessor to terminate all execution and local bus activity.
All entries into the cache are invalidated, the cache is disabled, and the FPU is reset. The
Amb5,86 CPU begins executing from the boot vector at FFFFFFFOh after system reset is
deasserted. The core clock frequency is 100 MHz.

Soft CPU Reset

Soft CPU reset does not affect the CPU'’s write buffers, cache, or cache mode (write-back
or write-through). The Am5,86 CPU core clock frequency remains the same, and cache
snooping continues unaffected during soft reset.

Soft reset provides a method to switch from protected to real operating mode. After a soft
CPU reset, the Am5,86 CPU begins initialization at location FFFFFFFOh. The processor
state is the same as it is after a hard reset, except that the internal cache, the CD and NW
bits in the Am5,86 CPU’s machine status (CRO) register, and the Am5,86 CPU'’s write
buffers retain the values they had prior to the soft reset.

Elan™SC520 Microcontroller User’s Manual 7-5

AMDA1 Am5,86° CPU

Asoftresetevent clearsthe NMI_ENB bitin the Interrupt Control (PICICR) register, disabling
NMls. This allows software to initialize the stack pointer before setting the NMI_ENB bit
again after a soft reset.

7-6 Elan™SC520 Microcontroller User’s Manual

8 SYSTEM ARBITRATION

AMDA

8.1

8.2

OVERVIEW

The ElanSC520 microcontroller includes two arbiters. A CPU bus arbiter arbitrates between
the Am5,86 CPU, the PCI host bridge, and the GP-DMA controller on the internal CPU
bus. A PCI bus arbiter arbitrates between the Am5,86 CPU and up to five external PCI
masters on the external PCI bus. The system arbiter complies with PCI Local Bus
Specification, Revision 2.2, and complies with PCI bus transaction ordering rules.

Features of the arbitration subsystem include:

Supports up to five external PCl bus masters
Supports concurrent and nonconcurrent operating modes:

— Concurrent arbitration mode allows PCI bus arbitration to occur independently of CPU
bus arbitration, supporting peer-to-peer operation on PCI bus simultaneously with
CPU access of memory and GP bus.

— Nonconcurrent arbitration mode forces all masters to automatically acquire ownership
of both PCI and CPU buses, regardless of destination of the cycles.

PCI bus arbiter supports two queues with rotating priority for bus mastership:

— High-priority queue supports two bus masters maximum, any masters can be
programmed to the high-priority queue.

— Low-priority queue contains all masters not assigned to the high-priority queue.

CPU priority is programmable to automatically achieve bus ownership following every
one, two, or three PCIl-bus-master tenures.

Option for PCI bus parking on CPU or on last master in concurrent arbitration mode

PCI bus master request/grant pairs can be individually masked in a separate control
register.

CPU bus arbiter provides an automatic Am5,86 CPU bypass that allows continued PCI
bus and GP-DMA access of SDRAM during Am5,86 CPU clock changes and PLL
stabilization periods.

BLOCK DIAGRAM
Figure 8-1 shows a block diagram of the system arbiter.

Elan™SC520 Microcontroller User’s Manual 8-1

AMDﬂ System Arbitration

Figure 8-1 System Arbitration Block Diagram

Elan™SC520 Microcontroller
GP Bus
CPU
R > ROM
System Arbiter
4—
CPUBus Arbiter Be) GP-DMA < » SDRAM Controller
<—
[%2]
>
: E
-
'Y Q
o
PCI Bus Arbiter _
gnt PCl Host Bridge | «—
e
req
I 1
o
2 E
|.u =z
o 9
< <
14 O]
< ~ < >
PCI Bus
8.3 REGISTERS

The arbitration subsystem is controlled by the memory-mapped registers listed in Table 8-1.

Table 8-1 System Arbitration Registers—Memory-Mapped

MMCR
Offset
Register Mnemonic Address Function
System Arbiter Control SYSARBCTL 70h PCI bus parking select, concurrent arbitration
mode enable, PCI bus grant time-out interrupt
enable
PCI Bus Arbiter Status PCIARBSTA 71h PCI bus arbiter grant time-out identification and
status
System Arbiter Master SYSARBMENB | 72h Enables for PCI bus REQ4—-REQO signals
Enable
Arbiter Priority Control ARBPRICTL 74h PCI bus arbiter rotating priority queue control

8-2 Elan™SC520 Microcontroller User’s Manual

System Arbitration AMD:'

Table 8-1 System Arbitration Registers—Memory-Mapped (Continued)
MMCR
Offset
Register Mnemonic Address Function
PCI Host Bridge Interrupt PCIHOSTMAP D14h System arbiter and PCI host bridge interrupt
Mapping mapping to any of 22 available interrupt
channels or NMI, PCI NMI enable control
8.4 OPERATION
The ElanSC520 microcontroller’s arbitration subsystem consists of two separate bus
arbitration units for the CPU bus and the PCI bus.
m The CPU bus arbiter arbitrates between the Am5,86 CPU, the PCI host bridge, and the
GP-DMA controller on the internal CPU bus.
m The PCI bus arbiter arbitrates between the Am5,86 CPU and up to five external PCI
masters on the external PCI bus.
8.4.1 Operating Modes
The system arbiter can operate in two modes for maximum flexibility:
m Nonconcurrent arbitration mode
m Concurrent arbitration mode
The two bus arbiters operate completely independently when the system is configured for
concurrent arbitration mode, but they are interlocked when the system is configured for
nonconcurrent arbitration mode.
Maximum performance is typically achieved in concurrent arbitration mode, because this
allows simultaneous PCI bus and CPU bus operation. However, some systems may benefit
from nonconcurrent arbitration mode, especially if the system experiences data coherency
problems due to older, non-compliant bus bridges.
The arbitration mode is specified with the CNCR_MODE_ENB bit in the System Arbiter
Control (SYSARBCTL) register (MMCR offset 70h). System arbitration defaults to
nonconcurrent arbitration mode after reset.
8.4.1.1 Nonconcurrent Arbitration Mode

Nonconcurrent arbitration mode forces all masters to automatically acquire ownership of
both PCI and CPU buses, regardless of destination of the cycles. In this mode, no
concurrency between the CPU bus and the PCI bus is allowed. External PCI masters are
only granted the PCI bus when the host bridge has been granted the CPU bus, even for
peer-to-peer transfers.

When an external PCI bus master requests the PCI bus, the following occurs:

1. The PCI bus arbiter samples an external PCI request asserted and asserts the host
bridge request to the CPU bus arbiter. The PCI bus arbiter is parked on the CPU by
default and should not be programmed to park on the last master in this mode.

2. The CPU bus arbiter samples the host bridge request asserted and grants the CPU bus
to the host bridge at the completion of the next Am5,86 CPU cycle. The CPU bus is
owned by the Am5,86 CPU by default, so a request to the CPU must be asserted to
gain ownership of this bus.

Elan™SC520 Microcontroller User’s Manual 8-3

AMDZ\

System Arbitration

8.4.1.2

3. The PCI bus arbiter sees that the host bridge has been granted the CPU bus and grants
the PCl bus to the external PCI master requesting the PCl bus. Note that now the external
PCI master owns both the PCI bus and the CPU bus.

In nonconcurrent arbitration mode, the PCI bus and CPU bus essentially become one bus
where only one master is allowed on the bus at any time. Note that write-posting from the
CPU to the PCI bus should be disabled while the arbiter is configured for nonconcurrent

arbitration mode.

Note that there is an exception to the normal rules of non-concurrency in this mode, as
listed in the following steps:

1. The CPU acquires both buses and performs a memory or I/O read/write of an external
PCl target. The target issues a retry to the CPU. The PCI bus is idle due to the retry, but
the CPU still remains active (in a wait state) on the CPU bus.

2. Anexternal PCl bus master now asserts a request to perform a memory write to SDRAM.
In normal nonconcurrent arbitration mode, this request would not be granted, because
the PCI bus arbiter would be waiting to acquire ownership of the CPU bus (but the CPU
is in a wait state waiting to retry the PCI target read). PCI bus transaction ordering
specifies that a PCI agent cannot base the acceptance of a memory write as a target
on the completion of a read as a master. Therefore the ElanSC520 microcontroller’s
host bridge must force the CPU off the bus and allow the external master write to
complete.

3. After asserting boff to the CPU, the arbiter grants the PCI bus to the external master,
and the master completes its write. When the PCI bus master completes the write, the
boff signal is deasserted and the CPU is back on the CPU bus. The original CPU-to-
PCI transaction is now retried by the ElanSC520 microcontroller’s host bridge master
controller.

Concurrent Arbitration Mode

Concurrent arbitration mode allows PCI bus arbitration to occur independently of CPU bus
arbitration, supporting peer-to-peer operation on PCI bus simultaneous with CPU access
of memory and the GP bus. In this mode, the CPU bus arbiter and PCI bus arbiter operate
independently. Default bus ownership for each of the two arbiters is the same as
nonconcurrent arbitration mode. External PCl masters are granted the PCI bus without the
host bridge being granted the CPU bus. This allows concurrent CPU bus and PCI bus
operation.

A few examples of concurrency are:

m The Am5,86 CPU accessing SDRAM concurrently with an external PCI bus master
writing data to the host bridge’s target FIFOs

m The Am5,86 CPU or GP-DMA controller accessing SDRAM concurrently with an
external PCI bus master accessing an external PCI bus target (peer-to-peer transfer)

m The ElanSC520 microcontroller’s host bridge target controller accessing SDRAM
concurrently with the master controller writing posted data to an external PCI target

8-4

Elan™SC520 Microcontroller User’s Manual

System Arbitration AMD:'

8.4.2 CPU Bus Arbiter
The CPU bus arbiter controls access to the internal CPU bus. This internal bus allows for:
m Am5,86 CPU access of SDRAM, GP bus, PCI, or ROM
m GP-DMA access of SDRAM
m PCI host bridge access of SDRAM for external PCI master cycles
No concurrent operation is allowed on the CPU bus (e.g., Am5,86 CPU accessing the GP
bus while the PCl host bridge is accessing SDRAM). At any time, only one master is granted
access to the CPU bus.

8.4.2.1 CPU Arbitration Protocol
The CPU bus arbiter implements a rotating priority algorithm that guarantees each bus
master a place in the arbitration rotation. A master becomes lowest priority in the queue
when itreceives a bus grant. A master is skipped in the rotation if its request is not asserted,
but a lower priority master request is asserted. In this case, the skipped master becomes
lowest priority as if it had been serviced (see Figure 8-2).

Figure 8-2 Skipped Master Example

MO is finishing its transaction; therefore its REQ and
GNT are being deasserted

Ml not requesting the bus at the end of the MO
transaction; thus it is skipped, and M2 gets GNT
REQ 0 REQ=1 asserted instead

Rotating Priority Queue

Notes:
Priority: MO, M2, MO, M1, M2, MO, M1, M2, ...

In the example shown in Figure 8-2, assume that MO has just finished a transaction. In this
case, the next master in the rotating priority queue would be M1. M1, however, is not
requesting the bus, and M2 (a lower priority master at this time) is requesting the bus. In
this case, M1 is skipped and the bus is granted to M2. M1 is the lowest priority master in
the rotation after being skipped, as if it had been granted the bus. After M2 finishes its
transaction, MO becomes the highest priority master.

The rotating queue for the CPU bus can be seen in Figure 8-3. The Am5,86 CPU is the
default owner when no master is requesting the CPU bus and following reset. The host
bridge becomes a bus requestor when it has posted write data from a PCI bus master, or
it needs to perform a SDRAM read for a PCI bus master.

Elan™SC520 Microcontroller User’s Manual 8-5

AMDZ\

System Arbitration

Figure 8-3

CPU Bus Rotating Priority Queue

CPU \

Host
Bridge
Target

GP Bus
DMA

8.4.2.2

8.4.2.3

CPU Cache Snooping

The Am5,86 CPU includes a write-back cache that updates only the internal cache on
memory writes from the CPU (if configured for write-back mode). When only the internal
cache memory is updated for a memory write, the external SDRAM contains invalid data.
Thus, snooping is required to maintain coherency when other bus masters are accessing
SDRAM. Any time another master (GP-DMA or PCI host bridge) is accessing a SDRAM
location that contains stale data (valid data is in Am5,86 CPU cache), the valid cache data
must be written back to SDRAM before the other master is allowed access to the SDRAM.
Therefore, all non-Am5,86 CPU accesses to SDRAM (both reads and writes) are snooped
by the Am5,86 CPU.

The Am5,86 CPU cache can be optionally configured to operate in write-through cache
mode by setting the CACHE_WR_MODE bitin the Am5,86 CPU Control (CPUCTL) register
(MMCR offset 02h). In this mode, both the internal cache and external memory are updated
on memory writes. Because the external memory is updated, there are no cache data
concurrency issues due to Am5,86 CPU memory writes. Other master write cycles are still
snooped, however, to keep the Am5,86 CPU's cache coherent with external memory. In
this case, the external memory is updated, and the cache contains invalid data. The snoop
invalidates this internal cache location to maintain coherency. There is no overhead involved
with snooping when the cache is configured for write-through cache mode. The snoop
happens during the cycle (no preemption, write-back, or additional wait-states are inserted).

The ElanSC520 microcontroller does not support dynamic cache-write policy changes.

Accessing the PCI Host Bridge Target

The PCI host bridge allows external PCI bus masters to read and write the ElanSC520
microcontroller's SDRAM. Two 64 doubleword FIFOs (one read, one write) in the
ElanSC520 microcontroller’s host bridge are used to increase PCl bus performance. Once
granted the bus by the CPU bus arbiter, the PCI host bridge target controller is allowed to
prefetch up to 64 DWORDSs (for a memory-read-multiple command), or write (memory-write
or memory-write-and-invalidate commands) up to 64 doublewords before the bus is granted
to another master. During this time, no other master is granted the CPU bus. The Am5,86
CPU, however, is granted the bus during this time to write back a cache location if necessary.

8-6

Elan™SC520 Microcontroller User’s Manual

System Arbitration AMD:'

8.4.2.4

8.4.2.5

8.4.3

GP Bus DMA Arbitration

The GP-DMA controller allows internal and external GP bus peripherals to have DMA
access to SDRAM. There is no preemption mechanism for GP-DMA. Therefore, once a
DMA transaction begins, no other master is granted the CPU bus until the DMA controller
deasserts its bus request, which varies according to whether the channel is programmed
for a single cycle transfer or a block mode transfer. See Chapter 14, “GP Bus DMA
Controller”, for information on the various DMA modes and transactions. However, the
Amb5,86 CPU is granted the bus during this time to write back a cache location, if necessary.

Arbitration During Clock Speed Changes

The Am5,86 CPU's internal core clock speed can be changed dynamically during operation,
for systems that require thermal management. While the clock is changing, there is a period
where the Am5,86 CPU cannot generate any bus cycles; therefore, cache snooping cannot
be performed.

To allow bus masters continued access of SDRAM during the long PLL recovery times, the
CPU bus arbiter masks the Am5,86 CPU bus requests and allows only the PCI host bridge
and GP-DMA controller access to the CPU bus. If no master is requesting the CPU bus,
the CPU bus arbiter is the default owner (no master is granted the bus).

Note that during normal operation when the Am5,86 CPU core clock is not changing, the
Am5,86 CPU is the default owner of the CPU bus.

PCI Bus Arbiter

The PCI Local Bus Specification, Revision 2.2, defines a central resource known as the
arbiter. This resource controls PCIl master access to the PCI bus. The arbitration approach
is access-based, which means a PCI master is only granted the bus when it needs
(requests) the bus (except in the case of bus parking, discussed in “Bus Parking” on
page 8-10).

A simple request/grant handshake is used where each PCI master has a unique request
(REQ) and grant (GNT) signal. PCI bus arbitration is hidden, which means arbitration for
the next cycle occurs during the current cycle, so that no cycles are wasted due to arbitration
(except when the bus is in the idle state and no other requests/grants are active).

The PCI bus is parked on a PCI master when the bus is idle to prevent floating signals on
the bus. This is done by asserting a PCl master’s GNT signal, even though the PCI master
is not requesting the bus. In turn, the PCI master turns on its output drivers, which prevents
the bus from floating.

The ElanSC520 microcontroller includes the PCI bus arbiter central resource. The
integrated PCI bus arbiter arbitrates between the PCI host bridge (Am5,86 CPU as PCI
master) and up to five external masters. The reg/gnt signal pair for the PCI host bridge on
the ElanSC520 microcontroller is internally connected to the PCI bus arbiter. Five external
REQ/GNT pin pairs (REQ4-REQO, GNT4-GNTO) are provided to connect external PCI
masters to the ElanSC520 microcontroller's PCI bus arbiter. In the following descriptions
in this chapter, the term PCI bus arbiter refers to the ElanSC520 microcontroller’s integrated
PCI bus arbiter.

Because the Am5,86 CPU does not burst memory-write cycles (except cache write-backs,
which do not apply here because PCI bus memory is noncacheable in the ElanSC520
microcontroller), the ElanSC520 microcontroller will not burst more than two consecutive
doublewords during a CPU write to the PCI bus. Therefore, the PCI bus master latency
timer is not provided in the ElanSC520 microcontroller.

Elan™SC520 Microcontroller User’s Manual 8-7

AMDZ\

System Arbitration

8.4.3.1

PCI Bus Arbitration Protocol

The PCI Local Bus Specification, Revision 2.2, states that the central arbiter mustimplement
a fairness algorithm, which means that each potential bus master must be granted access
to the bus independently of other requests. The PCI bus arbiter satisfies this requirement
by implementing a rotating priority arbitration scheme that guarantees each bus master a
place in the arbitration rotation (see Figure 8-3 on page 8-6 for information on rotating
priority arbitration).

Rotating priority mode alone may not provide adequate arbitration in a system where it is
known that some PCI bus masters require more bandwidth than others. Therefore, the
ElanSC520 microcontroller’s PCI bus arbiter has two rotating priority queues to
accommodate this requirement: a high-priority queue and a low-priority queue.

The masters in the high-priority queue are granted more bandwidth than masters in the
low-priority queue. The high-priority queue can contain up to two PCI masters, and the low-
priority queue contains all masters that are not in the high-priority queue. The
HI_PRI_O_SEL and HI_PRI_1_SEL bit fields in the Arbiter Priority Control (ARBPRICTL)
register (MMCR offset 74h) are used to specify the position of each PCI master in the high-
priority queue.

Both queues have rotating priority, and one low-priority master is granted the bus for every
rotation of the high-priority queue. After the low-priority master is granted the bus, the low-
priority queue rotates to the next low-priority master (see Figure 8-4).

Any one or two (or none) of the ElanSC520 microcontroller’s PCI bus masters can be placed
in the high-priority queue. Note that programming the same bus master for both slots in the
high-priority queue does provide additional performance for that master. The net result of
programming the same master in both slots of the high-priority queue is that the master is
given tenure during both slots. If no masters are in the high-priority queue, then there is
one rotating priority queue where each master has equal priority.

The high and low-priority queues are for external PCI bus masters, and the Am5,86 CPU
PCI master adds an additional level of arbitration. The PCI bus arbiter can be configured
with the CPU_PRI bit field in the Arbiter Priority Control (ARBPRICTL) register to grant the
bus to the Am5,86 CPU after every one, two, or three external PCI transactions (where the
external PCI master to be granted the bus is determined from the high and low-priority
queues). This implements another rotating priority queue (see Figure 8-5).

See the PCI Local Bus Specification, Revision 2.2, for detailed requirements of PCI bus
arbitration.

8-8

Elan™SC520 Microcontroller User’s Manual

System Arbitration

AMDA

Figure 8-4 External PCI Master Arbitration Queues

HP1

HPO LPx

High-Priority Queue

Notes:

HPO, HP1: High-priority masters

LPO, LP1, LP2, LP3, ..., LPn: Low-priority masters
LPx: Current low-priority master selected

Priority: HPO, HP1, LPO, HPO, HP1, LP1, HPO, HP1, LP2, HPO, HP1, LP3, .

& D

LPn LP1

LP2

LP3 4,,///

Low-Priority Queue

.., HPO, HP1, LPn

Figure 8-5 Host Bridge Master Arbitration Queue

»
- CPU
/
/ >
' | NN
Ext | BExt
PCI | PCI
|
|
Ext
PCI

Notes:

The PCI bus arbiter is configurable to grant the bus to the host bridge after every 1, 2, or 3 external

PCI transactions.
Priority configured for 1: CPU, Ext PCI, CPU, Ext PCI, ...

Priority configured for 2: CPU, Ext PCI, Ext PCI, CPU, Ext PCI, Ext PCI, ...
Priority configured for 3: CPU, Ext PCI, Ext PCI, Ext PCIl, CPU, Ext PCI, Ext PCI, Ext PCI, ...

Elan™SC520 Microcontroller User’s Manual

AMDZ\

System Arbitration

8.4.3.2

8.4.3.2.1

8.4.3.2.2

8.4.3.3

Bus Parking

The PCI bus arbiter parks the bus on a PCI bus master when the bus is idle (no master is
requesting the bus). This is required on the PCI bus to guarantee that the bus is properly
terminated at all times. The PCI bus arbiter arbitrates for the next transaction as soon as
the current PCI master that is granted the bus begins its transaction.

Bus parking is configured with the BUS_PARK_SEL bit in the System Arbiter Control
(SYSARBCTL) register (MMCR offset 70h). Note that the BUS_PARK_SEL bit must not be
changed except during PCI bus arbiter initialization after a system of programmable reset.

Nonconcurrent Arbitration Mode Bus Parking

The bus should always be parked on the CPU in nonconcurrent arbitration mode. This is
necessary to guarantee adequate CPU performance. Otherwise, the CPU would be
required to acquire ownership of both the CPU bus and the PClI bus for each external access
(including code fetches).

Concurrent Arbitration Mode Bus Parking

In concurrent arbitration mode, the PCI bus arbiter can be configured to park on the last
master that was granted the bus or configured to always park on the Am5,86 CPU. If no
other PCI masters are requesting the bus, the GNT to the current PCI master remains
asserted until the current PCIl master transaction completes.

A bus master that is parked can start a transaction without asserting its REQ pin (PCI bus
protocol allows a master to start a cycle when its GNT is asserted and the bus is idle), but
it must assert REQ if it requires multiple transactions.

When no PCI bus requests or grants are active, the arbiter retains priority established from
the last tenure. For example, if the bus is idle and no requests or grants are active and all
masters simultaneously request the bus, the arbiter services the master that is next in
rotation.

Rearbitration

A PCI bus master that is granted the bus and has not started a transaction within 16 clocks
after the bus becomes idle can be assumed to be “broken.” In this case, the PCI bus arbiter
automatically re-arbitrates and grants the bus to the next PCI master.

An interrupt can be generated when a PCI bus master that has acquired bus ownership
has not started a transaction within 16 clocks, and the REQ/GNT number of the “broken”
PCI master is reported in the PCI Bus Arbiter Status (PCIARBSTA) register (MMCR offset
71h). This allows software to disable the broken master and modify the bus parking such
that the PCI bus is parked on the CPU.

8-10

Elan™SC520 Microcontroller User’s Manual

System Arbitration AMD:'

8.4.4 Bus Cycles
This section includes example timing diagrams showing various types of arbitration that
may occur in the ElanSC520 microcontroller. Note that these are example cases only, and
not all cases are shown. The diagrams are functionally representative in nature, and should
not be used to infer detailed timing information. Note also that the synchronization between
the CPU and PCI clock domains is not shown in detail.
8.4.4.1 CPU Bus Arbitration
Figure 8-6 shows CPU bus arbitration between two CPU bus masters (for clarity, this
diagram shows only two bus masters). For additional CPU bus masters, there would be
more arbitration signal groups and more than one CPU bus transaction could take place
before an individual CPU bus master would be granted the bus.
Figure 8-6 CPU Bus Arbitration
—1—2—3——4—5—6—7—8—9—10—11—12—13—14—15—16—17—18—19—20—
ck MUY\
cpu_breq |/ \ /
cpu_hold 1\ / \
cpu_hlda \ / \
cpu_ads] \ ./
cpu_rdy o/
mst_req _/ \
mst_gnt / \
mst_ads p‘/
mst_rdy LJ
Notes:

In Figure 8-6, the CPU bus master signals are labeled mst_xxx and the Am5,86 CPU signals are labeled cpu_xxx.

Snooping is not shown in this figure.

The clk signal denotes the 33-MHz clock source and represents both the CPU clock and the PCI clock. This diagram
does not represent the full synchronization of signals between these clock domains.

The following sequence annotates the CPU bus arbitration cycle shown in Figure 8-6.

m Clock #1: The Am5,86 CPU requests the bus by asserting cpu_breq. Note at this time
that the bus is granted to some other master because cpu_hlda is asserted.

m Clock #2: The CPU bus arbiter samples the Am5,86 CPU’s request asserted and begins
arbitration. The CPU bus arbiter determines that the bus is free and that the Am5,86
CPU is the next master to receive the bus, so it deasserts cpu_hold to the Am5,86 CPU.
If the bus was not free or the Am5,86 CPU was not the next master to receive the bus,

Elan™SC520 Microcontroller User’s Manual 8-11

AMDZ\

System Arbitration

cpu_hold to the Am5,86 CPU would remain asserted. In this example, another CPU bus
master also requests the bus by asserting mst_req.

m Clock #3: The Am5,86 CPU samples cpu_hold deasserted and deasserts cpu_hlda to
take ownership of the bus. The Am5,86 CPU begins a cycle by asserting cpu_ads.

m Clock #4: The CPU bus arbiter samples cpu_ads asserted and rearbitrates. The CPU
bus arbiter determines that the bus will be granted to another master (CPU bus master)
when the current cycle is done, so it asserts cpu_hold to the Am5,86 CPU. The Am5,86
CPU will maintain ownership of the bus until it asserts cpu_hlda.

m Clock #8: The Am5,86 CPU samples cpu_rdy asserted, which ends the current cycle.
The Am5,86 CPU has also sampled cpu_hold asserted and surrenders the bus by
asserting cpu_hlda. The Am5,86 CPU has another cycle pending, so itasserts cpu_breq
to request access to the CPU bus.

m Clock #9: The CPU bus arbiter samples cpu_hlda asserted from the Am5,86 CPU and
grants the bus to the CPU bus master (the next master in the queue) by asserting mst_gnt
to the CPU bus master.

m Clock #10: The CPU bus master samples mst_gnt asserted and begins a cycle by
asserting mst_ads.

m Clock #11: The CPU bus arbiter samples mst_ads asserted and rearbitrates. The CPU
bus arbiter determines that the bus will be granted to the Am5,86 CPU when the current
cycle is done, so it deasserts mst_gnt to the CPU bus master. The CPU bus master will
maintain ownership of the bus until it deasserts mst_req.

m Clock #15: The CPU bus master samples mst_rdy asserted, which ends the current
cycle. The CPU bus master also samples mst_gnt deasserted and surrenders the bus
by deasserting mst_req.

m Clock #16: The CPU bus arbiter samples mst_req deasserted from the CPU bus master,
and grants the bus to the Am5,86 CPU by deasserting cpu_hold.

8.4.4.2 CPU Bus Cache Write-Back
Figure 8-7 shows an Am5,86 CPU cache write-back cycle. The cache must be written back
when another CPU bus master accesses a memory location that has been modified in the
internal Am5,86 CPU cache only (the external memory contains invalid data).

8-12 Elan™SC520 Microcontroller User's Manual

System Arbitration AMDl‘yl

Figure 8-7 CPU Bus Cache Write-Back
—1 2 3 4 5 6 T 8 O—10—/11—/12— 13— 14— 15—16—17—/—18—/—19—
ck M\ /SN NS\
cpu_hold \
cpu_hlda \
eads o/
hitm \ /
cpu_ads / \
cpu_rdy o
mst_req \
mst_gnt !
mst_ads ! pJ
mst_rdy o/
Notes:

In Figure 8-7, the CPU bus master signals are labeled mst_xxxx and the Am5,86 CPU signals are labeled cpu_xxxx.

The additional internal CPU bus interface signals shown in Figure 8-7 for write-back cycles are
e eads: External Address Strobe—Asserted by the CPU bus master to initiate a snoop by the Am5,86 CPU.

« hitm: Hit Modified Line—CPU must write back cache line to maintain coherency.

The clk signal denotes the 33-MHz clock source and represents both the CPU clock and the PCI clock. This diagram
does not represent the full synchronization of signals between these clock domains.

The following sequence annotates the CPU bus cache write-back cycle shown in Figure 8-7.

Clock #1: The CPU bus master owns the bus (CPU bus master mst_gnt is asserted,
Amb5,86 CPU cpu_hold/cpu_hlda are asserted).

Clock #2: The CPU bus master initiates an inquire cycle by asserting eads to the Am5, 86
CPU.

Clock #4: The Am5,86 CPU asserts hitm to signal that the snoop resulted in a hit to a
modified line. The Am5,86 CPU must perform a write-back cycle to maintain coherency.

Clock #5: The CPU bus master samples hitm asserted and relinquishes the bus on the
next clock. The CPU bus arbiter deasserts cpu_hold to the Am5,86 CPU to allow the
Am5,86 CPU to perform the write-back cycle.

Clock #6: The Am5,86 CPU samples cpu_hold deasserted and deasserts cpu_hlda to
take ownership of the bus. The cpu_ads signal is asserted to begin the write-back cycle.

Clock #7: The CPU bus arbiter samples cpu_ads asserted and asserts cpu_hold to the
Amb5,86 CPU so that no additional cycles are generated after the write-back cycle.

Elan™SC520 Microcontroller User’s Manual 8-13

AMDﬂ System Arbitration

m Clock #11: The Am5,86 CPU samples cpu_rdy, which ends the write-back cycle. The
Amb5,86 CPU has also sampled cpu_hold asserted and surrenders the bus by asserting
cpu_hlda.

Note: This write-back cycle is for illustration purposes only; the actual write-back cycle

would consist of multiple data phases.

m Clock #12: The Am5,86 CPU deasserts hitm one clock after cpu_rdy ends the write-
back cycle.

m Clock #13: The CPU bus master samples hitm deasserted and starts the bus cycle.

8.4.4.3 CPU-to-PCI Cycle

Figure 8-8 shows an Am5,86 CPU-to-PClI bus cycle. The Am5,86 CPU cycle is either a
read cycle or a write cycle with write posting disabled.

Figure 8-8 CPU-to-PCI Cycle

23456 —10—11—12—13—14—15—16——17—18——19—
ck /NSNS

breq _ / \

cpu_hold \

~
(e}

1
L

cpu_hlda \
cpu_ads _/ —

cpu_rdy o/

req \ /

gnt \ /
FRAME L
DEVSEL ./
IRDY \

TRDY ./

Notes:

The clk signal denotes the 33-MHz clock source and represents both the CPU clock and the PCI clock. This diagram
does not represent the full synchronization of signals between these clock domains.

The following sequence annotates the Am5,86 CPU-to-PClI cycle shown in Figure 8-8.

m Clock #2: The Am5,86 CPU asserts breq to request the CPU bus. The CPU bus arbiter
will grant the bus to the CPU when the current bus owner’s cycle is completed. The
pending Am5,86 CPU cycle is to PCI.

m Clock #3: The CPU bus arbiter deasserts cpu_hold to the Am5,86 CPU to grant the bus
to the Am5,86 CPU. The deassertion of cpu_hold would be delayed if the CPU bus was
not idle or if another higher priority master was requesting the CPU bus.

8-14 Elan™SC520 Microcontroller User’s Manual

System Arbitration AMD:'

Clock #4: The cpu_hlda signal is deasserted by the Am5,86 CPU to take ownership of
the CPU bus, and cpu_ads is asserted to begin a cycle to PCI.

Clock #5: The CPU bus arbiter samples cpu_ads asserted and rearbitrates. In this
example, a higher priority master is requesting the bus, so cpu_hold is asserted to the
Am5,86 CPU. The Am5,86 CPU maintains ownership of the CPU bus until it completes
its cycle and asserts cpu_hlda.

Clock #9: The host bridge asserts its req to the PCI bus arbiter in response to the
Amb5,86 CPU bus cycle to PCI.

Clock #10: The PCl bus arbiter asserts gnt to the host bridge. The assertion of gnt would
be delayed if the bus was not idle or if another higher priority master was requesting the
PCI bus.

Clock #11: The host bridge samples gnt asserted and begins the PCI transaction.

Clock #17: The PCI transaction is complete and the host bridge returns cpu_rdy to the
Amb5,86 CPU ending the Am5,86 CPU-to-PCI cycle.

Clock #18: The Am5,86 CPU samples cpu_rdy asserted ending the current cycle and
asserts cpu_hlda to allow the next CPU bus master access to the CPU bus.

8.4.4.4 PCI Bus Arbitration
Figure 8-9 shows how the PCI bus arbiter arbitrates between two masters. Although there
are only two PCI masters in this example, the mechanism is the same when there are more
PCI masters. The differences are that there would be more REQ/GNT signal pairs and
more than one PCI bus transaction could take place before an individual PCI master is
granted the bus.
Figure 8-9 PCI Bus Arbitration
1 2 3 4 5 6 7 8 9 10—
CLKPCIIN \ \ \ \ \ \ \ \ \
REQO — 1\ /
GNTO \ /
REQ1 —\ /
GNT1
FRAME \ / \
IRDY / \
TRDY \ / \

The following sequence annotates the PCI bus arbitration cycle shown in Figure 8-9.

m Clock #2: Master 0 and master 1 simultaneously request access to the bus.

Elan™SC520 Microcontroller User’s Manual 8-15

AMDZ\

System Arbitration

8.4.4.5

Clock #3: The PCI bus arbiter samples REQ asserted and begins arbitration. Master 0
has higher priority at this time than master 1 so the PCI bus arbiter grants the PCI bus
to master O.

Clock #4. Master 0 samples the bus idle and its GNTO signal asserted and begins a
transaction by asserting FRAME. Master 0 now becomes the lowest priority master in
the rotating priority queue.

Clock #5: The PCI bus arbiter detects a transaction has started and rearbitrates for the
next master. Master 1 is the now the highest priority master in the rotating priority queue,
so the PCI bus arbiter deasserts the GNTO for master O and asserts the GNT1 for
master 1.

Clock #8: Master 1 samples the busidle and its GNT1 asserted and begins a transaction
by asserting FRAME. Master 1 now becomes the lowest priority master in the rotating
priority queue.

Clock #9: No other masters are requesting the bus, so the PCI bus arbiter keeps
asserting the GNT1 for master 1. This allows master 1 to continue the transaction, even
after its master latency timer has expired. If another master were requesting the bus,
the PCI bus arbiter would rearbitrate, deassert the GNT1 for master 1, and assert the
GNT for the next master to be granted the bus.

PCI Bus Arbitration Parking

Figure 8-10 shows an example of bus parking in concurrent arbitration mode when no
master is requesting access to the PCI bus.

In this example, the PCI bus arbiter is configured to park on the Am5,86 CPU. If the PCI
bus arbiter is configured to park on the last master that acquired the bus, then the PCI bus
arbiter would continue to assert the GNT to the master that had just completed a transaction.

Figure 8-10 PCI Bus Concurrent Mode Arbitration Parking

—1——2—3—4——5—6 7—8 9——10—11—12— 13— 14— 15—
ClkpeiN - AN
REQO / \ /
GNTO \ / \
= ;
gnt \ /
FRAME \ / \
IRDY \ / \
TRDY \ / R
Notes:

In Figure 8-10, req/gnt are for the Am5,86 CPU.

8-16

Elan™SC520 Microcontroller User’s Manual

System Arbitration AMD:'

The following sequence annotates the PCI bus concurrent mode arbitration parking cycle
shown in Figure 8-10.

m Clock #2: Master 0 requests access to the bus.

m Clock #3: The PCI bus arbiter samples REQ asserted and begins arbitration. Master 0
is the only master requesting the bus, so the PCI bus arbiter grants the bus to master 0
by asserting GNTO.

m Clock #4: Master 0 samples the busidle andits GNTO asserted, and begins a transaction
by asserting FRAME. Master 0 now becomes the lowest priority master in the rotating
priority queue.

m Clock #5: The PClI bus arbiter detects a transaction has started and begins to rearbitrate
for the next master. Because no other masters are requesting the bus, the PCl bus arbiter
keeps asserting the GNTO for master 0. This allows master 0 to continue a transaction
even after its master latency timer has expired. If another master were requesting the
bus, the PCI bus arbiter would rearbitrate, deassert the GNTO for master 0, and assert
the GNT for the next master to be granted the bus.

m Clock #7: Master 0 samples the end of the transaction. The PCI bus arbiter samples
FRAME deasserted, signaling that this is the last data phase of the transaction. Because
no other masters are requesting the bus, the PCI bus arbiter will now park the bus on
the configured master (Am5,86 CPU). The PCI bus arbiter deasserts GNTO to master
0 and asserts gnt to the Am5,86 CPU. Note that req is not asserted. If the PCI bus
arbiter was configured to park on the last master that acquired the bus, it would keep
GNTO asserted and park on master 0.

m Clock #8: The Am5,86 CPU samples the bus idle and its gnt asserted. Note the Am5,86
CPU does not have to start a transaction, but it does need to drive the shared PCI bus
signals to stable values. If the Am5,86 CPU wants to start a transaction, it does not have
to assert req and wait for gnt. It can assert FRAME and begin a transaction on any clock
it samples gnt asserted. The master on which the PCI bus is parked has no arbitration
latency.

m Clock #10: Master 0 requests the bus by asserting REQO.

m Clock #11: The PCI bus arbiter samples REQ asserted and begins arbitration. Master
0 is the only master requesting the bus, so the PCI bus arbiter determines that master
0 will be the next master to be granted the bus. The PCI bus arbiter then deasserts gnt
to the Am5,86 CPU.

m Clock #12: The PCI bus arbiter asserts GNTO. Note the PCI bus arbiter cannot
simultaneously deassert one master's GNT and assert another master’s GNT when the
bus is idle. Doing so could cause contention on the shared PCI bus signals.

m Clock #13: Master 0 samples the bus idle and its GNTO signal asserted and begins a
transaction by asserting FRAME. Master 0 now becomes the lowest priority master in
the rotating priority queue. Note that there is a two-clock arbitration latency for masters
that are not parked on the bus when the bus is idle. This is because, when the bus is
idle, one GNT cannot be asserted on the same clock when another GNT is deasserted.
Therefore, GNT to the master the bus is parked on will be deasserted in one clock, and
the GNT to the next master granted the bus will be asserted one clock later, resulting in
a two-clock arbitration latency.

Elan™SC520 Microcontroller User’s Manual 8-17

AMDZ\

System Arbitration

8.4.4.6

Nonconcurrent Mode Arbitration

Figure 8-11 shows external PCI master arbitration in nonconcurrent mode. In
nonconcurrent arbitration mode, both the CPU bus and the PCI bus are granted to the PCI
master, regardless of the destination of the PCI transaction.

Figure 8-11

CLKPCIIN
REQO
GNTO

hb_req

hb_gnt

FRAME
DEVSEL
IRDY

TRDY

Notes:

Nonconcurrent Mode Arbitration

—1 2 3 4 5 6 7 8 9 10——11——12—
ANV A B U A VU VS A U N U S A U VD A U U
A /
\ /
I \
/ \
./
[
\ /
L/

The diagram includes the following internal signals:
« hb_req: PCI host bridge requesting the Am5,86 CPU bus.

e hb_gnt: PCI host bridge has been granted Am5,86 CPU bus.

The following sequence annotates the nonconcurrent mode arbitration cycle shown in
Figure 8-11.

Clock #1: An external PCI master requests the PCI bus.

Clock #2: The PCI bus arbiter samples an external PCI request asserted and asserts
the host bridge request to the CPU bus arbiter. The external PCI master GNTO cannot
be asserted until the host bridge is granted the CPU bus. If the system arbiter were
operating in concurrent arbitration mode, the external PCl master GNTO could be
asserted in clock #2 because the PCI bus and the CPU bus would be operating
independently.

Clock #5: The CPU bus arbiter has determined the host bridge will be granted the CPU
bus and asserts hb_gnt to the host bridge. The assertion of hb_gnt could be delayed if
a higher priority master was requesting the CPU bus.

Clock #6: The PCI bus arbiter detects the host bridge has been granted the CPU bus
and asserts GNTO to the external PCI master.

Clock #7: The CPU bus arbiter rearbitrates and determines another CPU bus master
will be granted the bus and deasserts hb_gnt to the host bridge. The host bridge will

8-18

Elan™SC520 Microcontroller User’s Manual

System Arbitration AMD:'

8.4.5

8.4.6

maintain ownership of the CPU bus until it deasserts hb_req. The external PCI master
samples GNTO asserted and asserts FRAME to begin the PCI transaction.

m Clock #8: GNTO is deasserted because either the external master is parked on the CPU
or another master has requested the bus.

m Clock #11: The host bridge samples the end of the PCI transaction and has sampled
hb_gnt deasserted, so it deasserts hb_req to allow the next CPU bus master access to
the CPU bus.

Interrupts

The system arbiter has one interrupt signal routed to the ElanSC520 microcontroller’s PCI
host bridge. This interrupt source shares the interrupt controller input used by any PCI host
bridge interrupts that are enabled in the Host Bridge Master Interrupt Control
(HBMSTIRQCTL) register (MMCR offset 66h) register and the Host Bridge Target Interrupt
Control (HBTGTIRQCTL) (MMCR offset 62h) register.

The following condition can be programmed to generate an interrupt from the system arbiter.

m When the PCI bus arbiter has asserted a GNT in response to a request (the bus is not
parked) and a PCI transaction was not started within 16 clocks after the bus became
idle, per the PCI Local Bus Specification, Revision 2.2.

The GNT_TO_INT_ENB bit in the System Arbiter Control (SYSARBCTL) register (MMCR
offset 70h) is used to enable interrupts that are generated when the PCI bus arbiter detects
a grant time-out. Before the GNT_TO_INT_ENB bit is set, the PCI Host Bridge Interrupt
Mapping (PCIHOSTMAP) register (MMCR offset D14h) must be configured to route the
interrupt to the appropriate interrupt request level and priority.

The REQ/GNT number of the PCI master that did not start a transaction is reported in the
GNT_TO_STA bit of the PCI Bus Arbiter Status (PCIARBSTA) register (MMCR offset 71h).
Note that the GNT_TO_STA bit is set on PCI bus arbiter grant time-outs regardless of the
GNT_TO_INT_ENB bit value.

Software Considerations

The system arbiter can operate in concurrent or nonconcurrent arbitration mode (see
“Operating Modes” on page 8-3). Write posting from the CPU to the PCI bus should be
disabled while configured in nonconcurrent arbitration mode. When changing between
nonconcurrent and concurrent arbitration mode, all system arbiter requests should be
disabled, as follows:

m GP-DMA channels should be disabled to prevent the DMA controller from requesting
the CPU bus.

m External PCI bus master requests should be inhibited.
m The Am5,86 CPU should not attempt to access the PCI bus.

A PCI bus master that does not start a transaction within 16 clocks after the bus is idle can
be considered broken. The PCI bus arbiter checks for this condition and provides status
on which PCI bus master GNT was asserted when this condition was detected. Software
can read this status and disable the broken master's REQ to the PCI bus arbiter through
the System Arbiter Master Enable (SYSARBMENB) register (MMCR offset 72h). This
prevents the broken master from wasting PCI bandwidth.

Note thatthe PCI bus arbiter does not automatically disable the broken master's REQ signal.

Elan™SC520 Microcontroller User’s Manual 8-19

AMDZ\

System Arbitration

8.4.7

8.4.7.1

Latency

Because the PCI bus is shared by many masters, each master incurs a latency accessing
the bus due to other masters. This latency is determined by each master in the system and
the arbitration algorithm. The latency contributed by each master is controlled through its
associated master latency timer, which limits the amount of time a master is allowed for
each transaction. When this timer expires, the current master must end its transaction and
allow another master access to the bus.

The ElanSC520 microcontroller PCI bus arbiter has two rotating priority queues and an
Am5,86 CPU relative priority. The Am5,86 CPU does not burst on PCI, and therefore does
not have a master latency timer. The longest transaction for the Am5,86 CPU is 16 PCI
clocks.

The latency contributed by the ElanSC520 microcontroller PCI bus arbiter can be controlled
in the Arbiter Priority Control (ARBPRICTL) register (MMCR offset 74h) through the use of
the high-priority queue and the relative Am5,86 CPU priority configuration.

Simple Rotating Priority Latency

In a simple one-level rotating priority queue, the maximum latency for each master would
be the sum of all the other master latency timers in the system.

In Figure 8-12, the maximum latency for master MO would be the sum of the longest possible
transactions for masters M1, M2, M3, ..., Mn. The longest transaction for each master is
limited by its associated master latency timer, so the maximum latency for MO would be:

master latency timer for M1 + master latency timer for M2 + master latency timer for M3 +
... + master latency timer for Mn

This latency would be seen by MO when it had just completed a transaction, all other masters
were requesting access to the bus, and each master required the bus for the entire duration
of its associated master latency timer.

Figure 8-12 Simple Rotating Priority Queue

T

Mn M1

M2

o& . /

8-20

Elan™SC520 Microcontroller User’s Manual

System Arbitration AMD:'

8.4.7.2

8.4.7.3

8.4.7.4

8.4.7.5

High-Priority Queue Latency
The maximum latency for a master in the high-priority queue is the sum of:

m Master latency timer of other master in high-priority queue—This time can be decreased
by decreasing the master latency timer of the other master in the high-priority queue, or
this time can be eliminated by programming only one master in the high-priority queue.

m Longest master latency timer of all masters in the low-priority queue—This can be
decreased by decreasing the master latency timer of all masters in the low-priority queue.

m 3*(Am5,86 CPU maximum transaction time)

Low-Priority Queue Latency

The maximum latency for a master in the low-priority queue (note that after a low-priority
master has completed a transaction, every PCI master will be granted the bus before the
low-priority master will be granted the bus again) is the sum of:

m Number of external masters * (Am5,86 CPU maximum transaction time)—The Am5,86
CPU maximum transaction time is multiplied by the number of external masters, because
the Am5,86 CPU is granted the bus after every external PCI transaction if the Am5,86
CPU relative priority is configured for one external PCI master cycle. This can be
decreased by decreasing the Am5,86 CPU relative priority (configure the relative priority
to allow more external PCI cycles for every Am5,86 CPU PCI cycle).

m Number of masters in the low-priority queue * (master latency timers of all masters in
the high-priority queue)—The master latency timers of all masters in the high-priority
queue is multiplied by the number of masters in the low-priority queue, because the high-
priority masters are granted the bus after each low-priority master grant. This time can
be decreased by decreasing the number of masters in the high-priority queue or by
decreasing the master latency timers of the masters in the high-priority queue.

m Master latency timers of all masters in the low-priority queue—This time can be
decreased by decreasing the master latency timers of the masters in the low-priority
queue.

CPU Latency
The maximum latency for the Am5,86 CPU is:

m 3 * (longest master latency timer of all external masters)—The master latency timer is
multiplied by 3 because the worst case is when the Am5,86 CPU relative priority is

configured for three external PCI master cycles for every Am5,86 CPU PCI cycle. This

time can be decreased by decreasing the master latency timers of external masters or
by increasing the Am5,86 CPU relative priority.

Nonconcurrent Arbitration Mode Latency

Operating in nonconcurrent arbitration mode adds to the PCI bus latency. In nonconcurrent
arbitration mode, all PCI masters must be granted the CPU bus in addition to the PCI bus
before a transaction can proceed. The time associated with being granted the CPU bus
adds to each PCI master’s latency.

The maximum latency is:
(time for the longest Am5,86 CPU transfer) + (time for the longest GP-DMA transfer)

The longest Am5,86 CPU transfer is one cache line, and the longest GP-DMA transfer is
programmable. This additional latency is added to the latency of each external PCI master
as calculated in the high-priority and low-priority queues. This latency is incurred for all PCI

Elan™SC520 Microcontroller User’s Manual 8-21

AMDZ\

System Arbitration

8.4.7.6

8.4.7.7

8.5

transactions, not only transactions where the ElanSC520 microcontroller is the PCI target.
Note that this includes PCI bus transactions where both the master and the target are
external PCI bus agents.

Concurrent Arbitration Mode Latency

The CPU bus adds to the PCI bus latency even when operating in concurrent arbitration
mode. Buffering in the host bridge, however, decreases the amount of latency on the PCI
bus due to the CPU bus. PCI transactions where the ElanSC520 microcontroller is not the
target do not have any added latency due to the CPU bus.

PCI write transactions where the ElanSC520 microcontroller is the target are posted in the
host bridge. The data is not immediately written to SDRAM, but have some latency due to
CPU bus arbitration. The external PCI master transaction, however, will be completed, and
so the external PCI master will not see this additional latency.

PCI read transactions where the ElanSC520 microcontroller is the target can be delayed
transactions. In this case, the external PCI master requesting the data sees the latency
added by the CPU bus arbitration.

Other PCI transactions are allowed on the PCI bus while the host bridge is arbitrating for
the CPU bus, and so only the external PCI master requesting the data incurs the CPU bus
latency, not the whole PCI bus. Note that CPU bus latency is added only to external PCI
master read transactions where the ElanSC520 microcontroller is the target.

Concurrent Arbitration Mode Bus Parking Latency

There is some latency associated with bus parking. The master that is parked on the bus
is able to begin a transaction immediately (without having to assert REQ), because its GNT
is already asserted. All other masters have to arbitrate for the bus by asserting REQ and
waiting for GNT. This arbitration takes two PCI clocks (see “PCI Bus Arbitration Parking”

on page 8-16). This applies to concurrent mode arbitration only.

INITIALIZATION

The system arbiter logic and configuration is reset in response to system reset.

After reset, the system arbiter operates in nonconcurrent arbitration mode. The priority
gueue is defaulted such that REQO is the highest priority and REQ4 is the lowest priority,

because no masters are configured in the high-priority queue at this time. All masters are
disabled at reset, with the exception of the CPU as a PCl and CPU bus master.

After reset, the following initialization steps are required:

1. Enable concurrent operating mode, if desired, by setting the CNCR_MODE_ENB bit in
the System Arbiter Control (SYSARBCTL) register (MMCR offset 70h). System
arbitration defaults to nonconcurrent arbitration mode after reset. Note that changing
the CNCR_MODE_ENB bit should only be done when all bus master requests are
disabled.

2. Configure PCI bus parking with the BUS_PARK_SEL bit in the System Arbiter Control
(SYSARBCTL) register. Note thatthe BUS _PARK_SEL bitshould only be changed when
the PCl bus is currently parked on the CPU. By default, the PCI bus arbiter parks on the
Am5,86 CPU, but the arbiter can be programmed to park on the last active PCI bus

master if operating in concurrent arbitration mode.
3. Configure PCI bus arbiter priority in the Arbiter Priority Control (ARBPRICTL) register

(MMCR offset 74h) if any external PCI masters are to be configured in the high-priority
gueue. By default, all external masters are configured to be in the low-priority queue.

8-22

Elan™SC520 Microcontroller User’s Manual

System Arbitration AMD:'

4. Enable external PCl requests to the PCI bus arbiter in the System Arbiter Master Enable
(SYSARBMENB) register (MMCR offset 72h). By default, all external PCI bus master
requests are disabled.

5. Enable/Clear the PCI bus GNT time-out interrupt with the GNT_TO_INT_ENB bit in the
System Arbiter Control (SYSARBCTL) register, if desired. By default, this interrupt
source is disabled, but the GNT_TO _ID status bit is set in the PCI Bus Arbiter Status
(PCIARBSTA) register (MMCR offset 71h) if a PCI bus GNT time-out is detected.

Elan™SC520 Microcontroller User’s Manual 8-23

AMDﬂ System Arbitration

8-24 Elan™SC520 Microcontroller User’s Manual

9 PCI BUS HOST BRIDGE

AMDA

9.1

9.2

OVERVIEW

The ElanSC520 microcontroller includes an integrated PCI bus host bridge, which allows
the microcontroller to interface with any PCI bus Revision 2.2-compliant master or target
device.

The PCI host bridge includes the following features:

33 MHz, 32-bit PCI bus Revision 2.2-compliant
Peak transfer rate of 132 Mbytes/s
Support for delayed transactions improves PCI bus utilization

Support for long bursts without disconnect when the ElanSC520 microcontroller is a
target (64 doublewords for both reads and writes)

Capable of zero wait state burst transfers as a target

Support for advanced PCIl bus commands as a target: memory-read-line, memory-read-
multiple

Flexible PCI bus interrupt steering logic

Supports fast back-to-back transactions as a PCI bus target

According to the PCI Local Bus Specification, Revision 2.2, the initiator, or master, is the
device that initiates the PCI transfer. The slave, or target, is the device being addressed by
the master for the data transfer.

BLOCK DIAGRAM
The ElanSC520 microcontroller PCI host bridge interface is shown in Figure 9-1.

Elan™SC520 Microcontroller User’s Manual 9-1

AMDZ\

PCI Bus Host Bridge

Figure 9-1 PCI Interface Block Diagram
Elan™SC520 Microcontroller
CPU CPU Bus SDRAM
< > Controller
PCI Host Bridge Controller
[v ;A
Read Write
FFO_ |\ _|_ _|_FIFO
v SN I R
Write I N R
FIFO
v
PCI Master Controller PCI Target Controller
PCI —» Interrupt
Arbiter [Steering
A A A A A A A A A A A A A
ol 1o [o
‘8’ ‘E z| 3 3 ‘H.ﬂ
32 5o W |19 m 5
| = ala s S S sl o]zl |x z
SEl 33 BlEE Oz E Bl BEIEEE 7
x| 1o o| o el & & < 0 Ellx| ol la| o E
< Y ¥ >
PCI Bus
9.3 SYSTEM DESIGN
Figure 9-2 shows how the ElanSC520 microcontroller can be connected to an external PCI
bus target device.
Figure 9-3 on page 9-4 shows how the ElanSC520 microcontroller can be connected to an
external PCI bus master device.
In each configuration, the PCI bus clock is driven from the ElanSC520 microcontroller on
the CLKPCIOUT pin and may require external buffering due to system loading (see “PCI
Clocking” on page 9-5). RST, the PCI bus reset signal, is driven from the ElanSC520
microcontroller.
The optional PCI bus target device interrupts can be connected to the PCI bus interrupt
pins on the ElanSC520 microcontroller (INTA, INTB, INTC, INTD) or any of the GPIRQ10-
9-2 Elan™SC520 Microcontroller User's Manual

PCI Bus Host Bridge AMD:'

GPIRQO pins on the GP bus. See Chapter 15, “Programmable Interrupt Controller”, for
further information on connecting interrupt requests to the ElanSC520 microcontroller.

Figure 9-4 on page 9-5 shows how the PERR and SERR signals are connected to the
ElanSC520 microcontroller. PERR is driven by the PCI bus device (including the host
bridge) that is receiving data (sampling the AD31-ADO bus during data phases). SERR is
driven by external PCI bus devices that detect a system error. External pullups must be
provided for PERR and SERR.

The PCI bus input and output pins of the ElanSC520 microcontroller are PCI bus revision
2.2 compliant. See the PCI bus specification for information on physical loading and routing.
The following PCI signals require pullups: FRAME, IRDY, TRDY, STOP, DEVSEL, PERR,
and SERR. These pullups must be provided externally to the ElanSC520 microcontroller
(the ElanSC520 microcontroller PCI bus pins do not have any termination).

The system PCl bus reset (RST) signal is sourced from the ElanSC520 microcontroller and
is asynchronous to the PCI bus clock. See “Initialization” on page 9-29 for more information
on reset.

Figure 9-2 Elan™SC520 Microcontroller Connection to an External PCI Bus Target
Elan™SC520 Microcontroller ~ A\P31-AD0 » AD31-ADO ECI_Target
- evice
CBE3-CBEO « » CRE2_CREN
PCI Bus Host Bridge < » CBE3-CBEO
(PCI bus master) PAR < > PAR
FRAME » FRAME
IRDY » IRDY
TRDY < TRDY
STOP « STOP
DEVSEL <« DEVSEL
PERR <« » PERR
RST > RST
INT® < INTA-INTD
—» IDSEL
Clock Buffering
(optional
r |_ al
CLKPCIOUT » CLK
Ll
CLKPCIIN <«
Notes:

1. INT implies any of the following pins: INTA—INTD or GPIRQ10-GPIRQO

Elan™SC520 Microcontroller User’s Manual 9-3

AMDZ\

PCI Bus Host Bridge

Figure 9-3

Elan™SC520 Microcontroller ~ AD31-ADO

PCI Bus Host Bridge CBE3-CBEO

(PCI bus target) PAR

FRAME
IRDY
TRDY
STOP
DEVSEL
PERR
SERR
RST
INTL
REQx

GNTXx

CLKPCIOUT

CLKPCIIN

Notes:

>

|

A

A

Ll

A

»
»

A

v

v

A

v

A

v

v

A

A

Clock Buffering

(optional
r |_ B

v

A

Ll

_I

v

Elan™SC520 Microcontroller Connection to an External PCI Bus Master

PCI Master
Device

AD31-ADO
CBE3-CBEO
PAR

FRAME
IRDY

TRDY

STOP
DEVSEL
PERR
SERR

RST
INTA-INTD
REQ

GNT

CLK

1. INT implies any of the following pins: INTA—INTD or GPIRQ10-GPIRQO

9-4 Elan™SC520 Microcontroller User’s Manual

PCI Bus Host Bridge AMDI‘yl

Figure 9-4 Elan™SC520 Microcontroller SERR and PERR Connection
PERR <« % » PERR PCI Device O
SERR « SERR
Elan™SC520 Microcontroller > BERB
1 PERR pcj Device 1
SERR
——————» :
) HSRK PCI Device 2
SERR
—————
PERR PCI Device 3
SERR
PERR PCI Device 4
SERR
9.3.1 PCI Clocking

The system PCI bus clock (CLK) is sourced from the ElanSC520 microcontroller. There
are two PCI bus clock pins on the ElanSC520 microcontroller: CLKPCIIN and CLKPCIOUT.
The CLKPCIOUT output pin drives a 33-MHz clock that is used as the system PCI bus
clock. However, the PCI host bridge logic is clocked from the CLKPCIIN input pin. The two
pins are provided for the PCI bus clock to minimize clock skew between the PCI host bridge
and external PCI bus devices.

The CLKPCIIN input pin guarantees that the PCI host bridge is driven with the same clock
as the external PCI bus devices. Otherwise, external buffering and loading of the
CLKPCIOUT pin could delay the clock, so that the skew between the PCI host bridge and
external PCI bus devices would not meet the PCI bus specification.

External buffering of CLKPCIOUT may or may not be required, depending on the system
loading (see Figure 9-5 and Figure 9-6). The ElanSC520 microcontroller does not
dynamically slow down or stop the output CLKPCIOUT clock; therefore the PCI bus
CLKRUN pin is not supported.

The CLKPCIIN pin is specifically intended for addressing the clock skew problem. It is not
intended to enable running the PCI host bridge with a clock that is asynchronous to the
CLKPCIOUT pin. Driving the CLKPCIIN pin from an external source that is of a different
frequency is also not supported.

Elan™SC520 Microcontroller User’s Manual 9-5

AMDH PCI Bus Host Bridge

Figure 9-5 PCI Bus Clocking Example 1: Lightly Loaded System

Elan™SC520 Microcontroller

PCI Device 0
CLKPCIOUT I P CLK
cLkpciN @
Notes:
In this lightly loaded system, no clock buffering is required.
Figure 9-6 PCI Bus Clocking Example 2: Heavily Loaded System
Elan™SC520 Microcontroller
| PCI Device 0
CLKPCIOUT * | B CLK
CLKPCIIN <—<l—<v
| PCI Device 1
4 | P CLK
PCI Device 2
|>—I>—> CLK
PCI Device 3
0—[>—> CLK
| PCI Device 4
| P CLK
Notes:
In this heavily loaded system, clock buffering is required.
9.3.1.1 Running the Elan™SC520 Microcontroller at 33.333 MHz

The clock thatis supplied to the PCl bus (CLKPCIOUT) is exactly the same as the frequency
of the crystal. The ElanSC520 microcontroller simply buffers the 33-MHz crystal input and
provides it to the CLKPCIOUT pin. Because crystals have inaccuracies, it is possible that

these inaccuracies cause the period of CLKPCIOUT to become marginally less than 30 ns.

9-6 Elan™SC520 Microcontroller User’s Manual

PCI Bus Host Bridge AMD:'

Itis up to the system designer to choose the accuracy of the crystal used with the ElanSC520
microcontroller. The 33.000-MHz frequency provides a better guard band than the 33.333-
MHz crystal. In practice, most PCI devices tolerate both frequencies, but it is important to
be aware of the impact of choosing the crystal on this potential violation of the PCI bus

specifications. The PCI bus specification requires that the minimum clock period be 30 ns.

9.4 REGISTERS
The PCI host bridge configuration registers specific to the ElanSC520 microcontroller are
memory-mapped in ElanSC520 microcontroller configuration space. These registers are
listed in Table 9-1. Table 9-2 lists the direct-mapped registers used to configure the PCI
bus host bridge. The standard PCI configuration space header registers supported on the
ElanSC520 microcontroller are shown in Table 9-3 as PCI indexed registers.
Table 9-1 PCIl Host Bridge Registers—Memory-Mapped
MMCR
Offset
Register Mnemonic Address Function
Host Bridge Control HBCTL 60h PCl reset, target FIFO purge enable, automatic
delayed transaction enable, and master write
posting enable
Host Bridge Target Interrupt | HBTGTIRQCTL | 62h Target interrupt or NMI select and interrupt
Control enables: delayed transaction time-out, address
parity, and data parity
Host Bridge Target Interrupt | HBTGTIRQSTA | 64h Targetinterrupt status: delayed transaction time-
Status out, address parity, data parity; target interrupt
identification
Host Bridge Master Interrupt | HBMSTIRQCTL | 66h Master interrupt or NMI select and interrupt
Control enables: retry time-out, target abort, master
abort, system error, received parity error,
detected parity error
Host Bridge Master Interrupt | HBMSTIRQSTA | 68h Master interrupt status: retry time-out, target
Status abort, master abort, system error, received
parity error, detected parity error; master
command interrupt identification
Host Bridge Master Interrupt | MSTINTADD 6Ch Master address interrupt identification
Address
Interrupt Pin Polarity INTPINPOL D10h Polarity of external interrupt sources (INTA—
INTD and GPIRQ10-GPIRQO0)
PCI Host Bridge Interrupt PCIHOSTMAP D14h System arbiter and PCI Host Bridge interrupt
Mapping mapping to any of 22 available interrupt
channels or NMI, PCI NMI enable control
PCI Interrupt A Mapping PCIINTAMAP D30h PCI INTA mapping
PCI Interrupt B Mapping PCIINTBMAP D31h PCI INTB mapping
PCI Interrupt C Mapping PCIINTCMAP D32h PCI INTC mapping
PCI Interrupt D Mapping PCIINTDMAP D33h PCI INTD mapping

Elan™SC520 Microcontroller User’s Manual 9-7

AMDZ\

PCI Bus Host Bridge

Table 9-2 PCI Host Bridge Registers—Direct-Mapped
Register Mnemonic I/O Address | Function
PCI Configuration Address PCICFGADR 0CF8h PCI configuration space enable, bus number,
device number, function number, register
number
PCI Configuration Data PCICFGDATA OCFCh PCI configuration data

Table 9-3 PCI Host Bridge Registers—PCI Indexed
Register Mnemonic I/0 Address | Function
Device/Vendor ID PCIDEVID CF8h/CFCh | Device identification, vendor identification
Index 00h
Status/Command PCISTACMD CF8h/CFCh | Parity error detected, signalled system error,
Index 04h received master abort, received target abort,
signalled target abort, DEVSEL timing, data
parity reported, fast back-to-back capable,
SERR enable, parity error response, master
enable, memory access enable, 1/0 space
enable
Class Code/Revision ID PCICCREVID CF8h/CFCh | Base class code, sub-class code, program
Index 08h interface type, revision identification
Header Type PCIHEADTYPE | CF8h/CFCh | PCI configuration space header format
Index OEh
Master Retry Time-Out PCIMRETRYTO | CF8h/CFCh | PCI master retry time-out value
Index 41h

9.5

OPERATION

The PCI host bridge on the ElanSC520 microcontroller has the following functionality:

m Master controller—Allows the Am5,86 CPU to be a master on the PCl bus. The Am5,86
CPU can generate configuration transactions to configure the PCI host bridge, as well

as all external devices on the PCI bus. The Am5,86 CPU can also generate memory
and 1/O read and write transactions on the PCI bus.

m Target controller—Allows external PCI bus masters to access the ElanSC520
microcontroller's SDRAM.

9.5.1

Unsupported PCI Bus Functions
The following list summarizes some of the PCI bus functionality that is not supported in the

ElanSC520 microcontroller's PCI host bridge. These functions are listed as optional in the
PCI bus specification.

m 66 MHz is not supported.

m 64-bit data is not supported.

m 64-bit addressing (dual address cycles) is not supported due to the maximum 32-bit
address space of the Am5,86 CPU.

m Cacheable PCI bus memory (SBDONE, SBO) is not supported.
m The optional CLKRUN pin is not supported.

9-8

Elan™SC520 Microcontroller User’s Manual

PCI Bus Host Bridge AMD:'

9.5.1.1

9.5.2

m The LOCK pin is an optional pin not required in most systems, because other
mechanisms are typically employed for coherency.

m Address/data stepping is not supported as a master due to the performance implications.

m The ElanSC520 microcontroller does not support a downstream “Southbridge” device,
because most peripherals normally included in a Southbridge are integrated into the
ElanSC520 microcontroller.

m The optional message-signalled interrupt feature described in the PC/ Local Bus
Specification, Revision 2.2, is not supported in the ElanSC520 microcontroller.

Unsupported PCI Bus Configuration Registers

Some standard PCI bus configuration registers are not implemented, because the
ElanSC520 microcontroller is a host-to-PCl bridge and does not support some optional PCI
functionality.

m Base Address registers are not implemented, because the ElanSC520 microcontroller
is the host PCI device. Target address space configuration is done through ElanSC520
microcontroller-specific configuration (see “PCIl Host Bridge Target Address Space” on
page 9-18).

m Latency timer and MAX_LAT, MIN_GNT are not implemented, because the ElanSC520
microcontroller's PCI host bridge does not support multiple data phase transactions as
a master.

m Cache line size is not implemented, because the ElanSC520 microcontroller PCI host
bridge does not support cacheable PCI memory.

Configuration Information
The PCI host bridge can generate configuration cycles on the PCI bus.

The Configuration Mechanism #1, as defined in the PCI Local Bus Specification, Revision
2.1,is used. The PCI Configuration Address (PCICFGADR) register resides at I/O address
0CF8h, and the PCI Configuration Data (PCICFGDATA) register resides at I/O address
OCFCh. The Am5,86 CPU accesses these two 1/0 ports to generate PCI configuration
cycles.

The PCI host bridge pre-drives the AD31-ADO pins for five clocks before asserting FRAME
when performing configuration cycles. This allows IDSEL to settle before the transaction
starts (IDSEL signals may have a slow rise time).

External PCI bus devices require an IDSEL pin to allow configuration from the ElanSC520
microcontroller's PCI bus host bridge. The method implemented for IDSEL generation is
system-specific; however, the ElanSC520 microcontroller implements the commonly used
practice in which the AD31-AD11 pins are asserted for IDSEL generation during the
configuration cycles (the host bridge uses AD11). In this scheme, the AD12 is IDSEL for
device number 1, AD13is IDSEL for device number 2, etc. The AD pins are asserted during
configuration cycles according to the decode of the PCI bus device; thus, this scheme is
limited to 20 devices on the PCI bus.

The ElanSC520 microcontroller's PCI bus host bridge is hardwired to device number 0
(AD11), and the host bridge PCI bus configuration registers are accessed through the PCI
Configuration Address (PCICFGADR) register (Port 0OCF8h) and PCI Configuration Data
(PCICFGDATA) register (Port OCFCh), like any external PCI device. An external PCI bus
configuration cycle is not generated when the Am5,86 CPU configures the internal PCI
host bridge registers.

Elan™SC520 Microcontroller User’s Manual 9-9

AMDZ\

PCI Bus Host Bridge

9.5.2.1

The host bridge PCI bus configuration space contains only PCI bus device configuration
header registers, as defined in the PCI bus specification. ElanSC520 microcontroller-
specific host bridge configuration registers are memory-mapped in ElanSC520
microcontroller configuration space. See Chapter 4, “System Address Mapping”, for further
details on memory-mapped configuration space.

Generating PCI Bus Configuration Cycles
A two-step process is required to generate a PCI bus configuration cycle.

1. First, the Am5,86 CPU must perform a 32-bit I/O write to the PCI Configuration Address

(PCICFGADR) register (Port 0CF8h) with the following information: bus number, device
number, function, and register number (doubleword) to be accessed (see Figure 9-7).

2. Then, the Am5,86 CPU can perform an I/O cycle (read or write) to the PCI Configuration
Data (PCICFGDATA) register (Port 0OCFCh) to access the desired configuration register.

Figure 9-7

PCI Configuration Address (PCICFGADR) Register

0CFBh OCFAh 0CF9h 0CF8h
31 30 24 23 16 15 11 10 87 210
| | |
EN- | Reserved BUS_NUM[7-0] DEVICE_ | FUNCTION_| REGISTER_ |0 0
ABLE NUM[4-0] * NUM[2-0] NUM[4-0]
| |
Bit Name Function
31 ENABLE This bit must be set to 1 to enable configuration
space mapping.
30-24 Reserved
23-16 BUS_NUM[7-0] Bus number
15-11 DEVICE_NUMI[4-0] Device number
10-8 FUNCTION_NUM[2-0] Function humber
7-2 REGISTER_NUM[4-0] Register number
1-0 Reserved These bits must always be written to 00.

For example, to access the Status/Command (PCISTACMD) register (PCI index 04h)
(doubleword 1) of the PCI host bridge, the following cycles are generated by the Am5,86
CPU:

1. 32-bit I/0O write to Port 0CF8h: 80000004h

ENABLE = 1 to enable configuration space mapping

BUS_NUM = 0 (PCI host bridge is on bus number 0)

DEVICE_NUM = 0 (PCI host bridge is hardwired to device number 0)
FUNCTION_NUM = 0 (PCI host bridge has only one function)

REGISTER_NUM =1

Bits 1-0 must be written 00

2. 8/16/24/32-bit I/O read/write to/from Port OCFCh to access configuration register bytes

9-10

Elan™SC520 Microcontroller User’s Manual

PCI Bus Host Bridge AMD:'

9.5.3

9.5.3.1

The Master Enable (BUS_MAS) bit in the Status/Command (PCISTACMD) register (PCI
index 04h) is always forced active. Thus, the PCI host bridge can always generate memory,
I/0, and configuration transactions on the PCI bus to configure external PCI devices.

To enable the host bridge as a PCI bus target device, the Memory Access Enable
(MEM_ENB) bit in the Status/Command (PCISTACMD) register must be set. When this bit
is set, the host bridge responds to external PCI bus master cycles that access the
ElanSC520 microcontroller's SDRAM.

No configuration bits need to be set to access the PCI host bridge’s configuration registers
from the Am5,86 CPU.

Note that any write access to the PCI Configuration Data (PCICFGDATA) register (Port
OCFCh) in which the ENABLE bit of the PCI Configuration Address (PCICFGADR) register
(Port OCF8h) is not set is forwarded to the PCI bus as an 1/O transaction.

Any non-doubleword access to Port 0OCF8h is also forwarded to the PCI bus as an I/O
transaction.

Elan™SC520 Microcontroller’s Host Bridge as PCI Bus Master

The PCI host bridge allows the Am5,86 CPU to be a master on the PCI bus. The Am5,86
CPU can generate configuration transactions to configure the host bridge, as well as all
external devices on the PCI bus (internal PCI host bridge configuration cycles are not seen
on the external PCI bus). The Am5,86 CPU can also generate memory and 1/O read and
write transactions on the PCI bus.

As a PCl bus master, the ElanSC520 microcontroller does not generate the following cycles:

m Dual address cycles for 64-bit addressing

m Memory-write-and-invalidate cycles (cacheable memory on the PCI bus is not
supported)

m Memory-read-multiple or memory-read-line cycles (the Am5,86 CPU does not generate
long read burst transactions that may benefit from these commands)

m Fast back-to-back cycles
m Lock cycles (the LOCK pin is not supported)
m Multiple data phase cycles

m Special cycles and interrupt acknowledge cycles (these Am5,86 CPU cycles are not
echoed on the PCI bus)

Write Posting

Toincrease Am5,86 CPU bandwidth utilization, memory writes to the PCI bus can be posted
by setting the M_WPOST_ENB bit in the Host Bridge Control (HBCTL) register (MMCR
offset 60h). This allows the Am5,86 CPU cycle to complete without incurring the PCI bus
transaction latency. The rdy signal is returned immediately to the Am5,86 CPU, and the
cycle completes sometime later on the PCl bus. The PCI host bridge posts only one Am5,86
CPU write cycle to the PCI bus. Am5,86 CPU-to-PCI bus-cycle ordering is maintained,
which means additional Am5,86 CPU cycles (both read and write) to the PCI bus incur wait
states until a posted write cycle completes on the PCI bus.

I/0 and configuration write cycles are not posted. However, write cycles to memory-mapped
I/O regions are not detected by the PCI host bridge, so write posting must be disabled to
prevent the posting of memory-mapped I/O cycles. If write posting is disabled, the PCI host

Elan™SC520 Microcontroller User’s Manual 9-11

AMDZ\

PCI Bus Host Bridge

9.5.3.2

9.5.3.3

9.5.3.4

9.5.3.4.1

bridge waits until the write cycle has completed on the PCI bus before returning ready to
the Am5,86 CPU.

Write posting should not be enabled while operating in nonconcurrent arbitration mode.
See Chapter 8, “System Arbitration”, for further details on nonconcurrent mode arbitration.

Read Cycles

The PCI host bridge does not read ahead PCI bus memory for Am5,86 CPU read cycles.
Each Am5,86 CPU read cycle generates a single data phase read cycle on the PCI bus,
with only the data requested by the Am5,86 CPU being read. The PCI host bridge does
not burst Am5,86 CPU-to-PClI-bus read cycles, because the Am5,86 CPU typically
performs burst reads only during cache-line fills, and PCI bus memory is noncacheable.
There are a few cases when the Am5,86 CPU may burst two doublewords (i.e., misaligned
transfer). In this case, the PCI host bridge breaks the transfer up into single cycles on the
PCI bus.

Delayed Transaction Support

The PCl host bridge as a PCI master supports delayed transactions. A transaction that was
retried repeats until completed on the PCI bus. The PCI host bridge does not make any
distinction between a transaction that was retried and a transaction that was disconnected.
Both types of transactions are repeated until they complete on the PCI bus.

A programmable retry time-out counter prevents a deadlock condition due to a broken target
on the PCI bus. The Master Retry Time-Out (M_RETRY_TO) field in the Master Retry Time-
Out (PCIMRETRYTO) register (PCl index 41h) controls this feature. When the time-out
counter expires (a cycle was retried unsuccessfully n times on the PCI bus), the cycle is
discarded and an interrupt can be generated. For a read cycle, the data returned is all ones.
The Host Bridge Master Interrupt Address (MSTINTADD) register (MMCR offset 6Ch)
contains the address of the transaction that was retried unsuccessfully. Note that the master
retry count configuration must not be changed except during PCI bus initialization after a
system or programmable reset.

Transaction ordering is maintained during delayed transactions. A transaction that is retried
by an external PCI bus target must complete before any subsequent Am5,86 CPU-to-PCI
bus transactions are generated.

Host Bridge Master Bus Cycles

This section describes in detail the cycles generated by the ElanSC520 microcontroller
acting as PCI host bridge master and includes both the PCI bus and the internal Am5,86
CPU bus. Note that these are example cases only, and not all cases are shown. The
diagrams are functionally representative in nature, and should not be used to infer detailed
timing information. Note also that the synchronization between the CPU and PCI clock
domains is not shown in detail.

CPU Read Cycle to the PCI Bus

Figure 9-8 shows an Am5,86 CPU read cycle to the PCI bus. Figure 9-8 could also
represent a memory, 1/O or external PCI bus device configuration cycles. The first group of
signals includes the internal Am5,86 CPU signals, the second group includes additional
ElanSC520 microcontroller internal signals, and the third group includes the PCI bus
signals. Note that the PCI bus request and grant signals are shown for convenience, but
these are not seen externally when the Am5,86 CPU is the initiator of PCI bus transactions.

9-12

Elan™SC520 Microcontroller User’s Manual

PCI Bus Host Bridge AMDZ\

Figure 9-8 CPU Read Cycle to the PCI Bus

N
w
I

5 6 i
54 S f

[0¢]
[¢e]
1N
(=]
1N
[TRN
[EE
)]
[EEY
w
F

cdk —_ /N N N N N NN N NS
ads —

cycle_info

rdy

blast ———

CPU Data

pcihit

ADx

(‘datain }—

CBEX

{‘address data in

{read cmd Byte enables

FRAME
IRDY

TRDY
DEVSEL

req
gnt

Notes:

The diagram includes the following internal signals:
e pcihit: Address decode signal that the current Am5,86 CPU cycle is a PCl cycle.

The clk signal denotes the 33-MHz clock source and represents both the CPU clock and the PCI clock. This diagram
does not represent the full synchronization of signals between these clock domains.

The following sequence annotates the Am5,86 CPU read cycle to the PCI bus shown in
Figure 9-8.

Clock #1: The Am5,86 CPU starts a read cycle to the PCI bus.

Clock #2: Note that blast is asserted by the Am5,86 CPU signaling a non-burst transfer.
If this were a burst read cycle, the Am5,86 CPU would deassert blast, but because the
PCI host bridge returns rdy to the Am5,86 CPU instead of brdy, the Am5,86 CPU would
break up the burst into single cycles. A posted write cycle pending in the master posted
write buffer would delay the completion of the Am5,86 CPU read cycle.

Clock #6: The PCI host bridge master controller has synchronized the Am5,86 CPU
bus request and asserts req to gain access to the PCI bus. Because the Am5,86 CPU
is the initiator of the cycle, the bus request signal is not seen externally.

Clock #7: The PCI host bridge gnt signal is sampled asserted, and the PCI bus is idle,
so FRAME is asserted to begin the PCI bus transaction. In this example, there is no
arbitration delay (the arbiter is parked on the host bridge). If another external PCI bus
master was granted the bus, or the bus was not idle, FRAME assertion would be delayed
until the host bridge’s gnt was asserted and the bus was idle.

Clock #9: The external PCI bus target asserts TRDY, indicating that the requested data
is available. In this example, the PCI bus target did not add any wait states to the
transaction. A PCI bus Revision 2.2-compliant target can add up to 16 wait states that
would delay the PCI bus transaction and subsequent Am5,86 CPU cycle completion.
An external PCl bus target can also issue a retry that would delay the PCI bus transaction
and subsequent Am5,86 CPU cycle completion (see Section 9.5.3.4.2).

Elan™SC520 Microcontroller User’s Manual 9-13

AMDZ\

PCI Bus Host Bridge

Clock #10: The PCI host bridge samples TRDY asserted and latches the data from the
PCI bus.

Clock #13: The Am5,86 CPU bus synchronizes the end of the PCI bus cycle and asserts
rdy to the Am5,86 CPU with the requested read data.

9.5.3.4.2 CPU Read Cycle to the PCI Bus with External Target Retry
Figure 9-9 shows an Am5,86 CPU read cycle to the PCI bus that was retried by the external
PCI bus target. An external PCI bus target can issue a retry if it is currently busy or if the
transaction will be completed as a delayed transaction.
Figure 9-9 CPU Read Cycle to the PCI Bus with External Target Retry
—1 2 3 4 5 6 7 8 9 1011 12 13 1415 1617 18 19—
ﬂ SRR Sl SN SN S U S U S U S U V2D 2 U S U S S D an U NS AWy
ads —_
cycle_info
rdy =
blast ——
CPU Data RENT
pcihit
ADx @ddress) (address——(data i)
CBEXx {ead cmd<_byte enables } fead cm nablés }
FRAME
IRDY
TRDY
DEVSEL
STOP
req
gnt
Notes:

The clk signal denotes the 33-MHz clock source and represents both the CPU clock and the PCI clock. This diagram
does not represent the full synchronization of signals between these clock domains.

Th
tar

e following sequence annotates the Am5,86 CPU read cycle to the PCI bus with external
get retry shown in Figure 9-9. This example is the same as a regular read (see

Section 9.5.3.4.1) until Clock #9.

Clock #9: The target asserts STOP with TRDY deasserted, signaling a retry. The target
may add up to 16 waitstates before asserting STOP, which would delay the PCI
transaction and Am5,86 CPU cycle completion.

Clock #10: The PCI host bridge master controller deasserts IRDY and ends the current
transaction. The data requested by the Am5,86 CPU was not read because of the
delayed transaction, so rdy is not returned to the Am5,86 CPU. The host bridge will retry
the current transaction until data is read from the target.

Clock #11: The PCI host bridge asserts req to re-gain access to the PCl bus. Because
the Am5,86 CPU is the initiator of the cycle, the bus request signal is not seen externally.

Clock #12: The PCI host bridge gnt signal is sampled asserted, and the PCI bus is idle,
so FRAME is asserted to retry the PCl transaction. In this example, there is no arbitration

9-14

Elan™SC520 Microcontroller User’s Manual

AMDA

PCI Bus Host Bridge

9.5.3.4.3

delay (the arbiter is parked on the host bridge). If another external PCI bus master was
granted the bus or the bus was not idle, FRAME assertion would be delayed until the
host bridge’s gnt was asserted and the bus was idle.

Clock #14: The PCI bus target asserts TRDY indicating the data is available.

Clock #15: The PCI host bridge samples TRDY asserted and latches the data from the
PCI bus.

Clock #18: The Am5,86 CPU bus synchronizes the end of the PCl bus cycle and asserts
rdy to the Am5,86 CPU with the requested read data.

CPU Posted Write Cycle to the PCI Bus

Figure 9-10 shows an Am5,86 CPU write cycle to the PCI bus that is posted by the PCI
host bridge. This can only be a memory-write cycle to the PCI bus; I/O and configuration
writes are not posted.

Figure 9-10 CPU Posted Write Cycle to the PCI Bus

clk

ads
cycle_info
rdy

blast

CPU Data

pcihit
ADX
CBEX
FRAME
IRDY
TRDY
DEVSEL
req

gnt

Notes:

1 2 3 4 5 6 7 8 9 10
—
()
T
T
data out
address X data out }

writelcmd ¥ byte enables

The clk signal denotes the 33-MHz clock source and represents both the CPU clock and the PCI clock. This diagram
does not represent the full synchronization of signals between these clock domains.

The following sequence annotates the Am5,86 CPU posted write cycle to the PCI bus
shown in Figure 9-10.

Clock #1: The Am5,86 CPU starts a write cycle to the PCI bus.

Clock #2: The PCI host bridge also asserts rdy to the Am5,86 CPU, which ends the
Amb5,86 CPU write cycle. The PCI bus transaction has been posted in the host bridge
and will complete sometime later. If another write cycle is already pending in the posted
write buffer, rdy will be delayed to the Am5,86 CPU until the preceding posted write has
completed.

Elan™SC520 Microcontroller User’s Manual 9-15

AMDZ\

PCI Bus Host Bridge

9.5.3.4.4

Clock #6: The PCI host bridge master controller has synchronized the Am5,86 CPU
bus request and asserts req to gain access to the PCI bus.

Clock #7: The PCI host bridge gnt signal is sampled asserted, and the PCl bus is idle,
so FRAME is asserted to begin the PCltransaction. In this example, there is no arbitration
delay (the arbiter is parked on the host bridge). If another external PCI master was
granted the bus or the bus was not idle, FRAME assertion would be delayed until the
host bridge’s gnt was asserted and the bus was idle. Because the Am5,86 CPU is the
initiator of the cycle, the bus request signal is not seen externally.

Clock #9: The external PClI target asserts TRDY indicating it can accept the write data.
In this example, the PCI target did not add any wait states to the transaction. A PCI bus
Revision 2.2 compliant target can add up to 16 wait states that would delay the

transaction completion. A PCI bus target can also retry the PClI transaction. In this case,
the host bridge continues to generate the same transaction until the target returns TRDY
to complete the transaction. See Section 9.5.3.4.2 for information on retried transactions.

Clock #10: The PCI host bridge samples TRDY asserted, which ends the PCI bus
transaction.

CPU Non-Posted Write Cycle to the PCI Bus

Figure 9-11 shows an Am5,86 CPU memory write cycle to the PCI bus with write posting
disabled. Figure 9-11 could represent any I/O or configuration write cycle.

Figure 9-11

clk

ads
cycle_info
rdy

blast
CPU Data

pcihit
ADXx
CBEX
FRAME
IRDY
TRDY
DEVSEL
req

gnt

Notes:

Am5,86 CPU Non-Posted Write Cycle to the PCI Bus

2 3 4 5 6 7 8 9 106 11 12 13—

N VD A U A VI) VD S U 2 W A VT 2 VD A U 2 G 2 W A i e u

g —

data out

{"address ¥ data out

{write’cmd ¥ yte enables }

The clk signal denotes the 33-MHz clock source and represents both the CPU clock and the PCI clock. This diagram
does not represent the full synchronization of signals between these clock domains.

9-16

Elan™SC520 Microcontroller User’s Manual

PCI Bus Host Bridge AMD:'

9.5.3.4.5

The following sequence annotates the Am5,86 CPU non-posted write cycle to the PCI bus
shown in Figure 9-11.

m Clock #1: The Am5,86 CPU starts a write cycle to the PCI bus.

m Clock #6: The PCI host bridge master controller has synchronized the Am5,86 CPU
bus request and asserts req to gain access to the PCI bus. Because the Am5,86 CPU
is the initiator of the cycle, the bus request signal is not seen externally.

m Clock #7: The PCI host bridge gnt signal is sampled asserted, and the PClI bus is idle,
so FRAME is asserted to begin the PCI bus transaction. In this example, there is no
arbitration delay (the arbiter is parked on the host bridge). If another external PCI bus
master was granted the bus, or the bus was not idle FRAME assertion would be delayed
until the host bridge’s gnt was asserted and the bus was idle. Because the Am5,86 CPU
is the initiator of the cycle, the bus request signal is not seen externally.

m Clock #9: The PCI target asserts TRDY, indicating it can accept the write data. In this
example, the PCI bus target did not add any wait states to the transaction. A PCI bus
Revision 2.2 compliant target can add up to 16 wait states that would delay the
transaction completion. A PCI bus target can also retry the transaction. In this case, the
host bridge continues to generate the same transaction until the target returns TRDY to
complete the transaction. The rdy signal is not returned to the Am5,86 CPU until the
PCI bus transaction completes. See Section 9.5.3.4.2 for information on retried
transactions.

m Clock #10: The PCI host bridge samples TRDY asserted, which ends the transaction.

m Clock #12: The Am5,86 CPU bus synchronizes the end of the PClI bus cycle and asserts
rdy to the Am5,86 CPU, which ends the write cycle.

PCI Bus Configuration Read/Write

Amb5,86 CPU write cycles to the PCI Configuration Address (PCICFGADR) register (Port
OCF8h) or the PCI Configuration Data (PCICFGDATA) register (Port OCFCh) for internal
PCI host bridge configuration complete with zero Am5,86 CPU cycle wait states (see
Figure 9-12).

Figure 9-12 CPU Write Cycles to Internal PCl Bus Configuration Registers

clk_cpu
ads
cycle_info
rdy

Data

1 2 3 4
I W L S B W U
A / \ []
(X |
\ /
{ cfg write data }

Amb5,86 CPU read cycles from the PCI Configuration Address (PCICFGADR) register or
PCI Configuration Data (PCICFGDATA) register for internal PCI host bridge configuration
registers also complete with zero wait states (see Figure 9-13). See the read and write

timing diagrams in Figure 9-8 through Figure 9-11 for Am5,86 CPU read and writes cycles

Elan™SC520 Microcontroller User’s Manual 9-17

AMDZ\

PCI Bus Host Bridge

to the PCI Configuration Data (PCICFGDATA) register that access external PCl bus device
configuration registers.

Figure 9-13

CPU Read Cycles from Internal PCI Bus Configuration Registers

1 2 3 4
clk_cpu 44444444ﬁx________;44444444*_________4444Agggﬁx________;ggggggggg_________[
ads \ / \ /
cycle_info { 4 |
rdy \ /
Data \/ read data)
9.5.4 Elan™SC520 Microcontroller’s Host Bridge as PCI Bus Target
As a target, the integrated PCI host bridge only accepts memory cycles from external PCI
bus masters to allow accesses to the ElanSC520 microcontroller's SDRAM.
To enable the host bridge as a PCI bus target device, the Memory Access Enable
(MEM_ENB) bit in the Status/Command (PCISTACMD) register must be set. When this bit
is set, the PCI host bridge ignores all I/O and configuration cycles on the PCI bus and
responds to memory cycles within the address space, as defined in Section 9.5.4.1.
9.5.4.1 PCI Host Bridge Target Address Space

Under normal conditions, the ElanSC520 microcontroller’s PCI host bridge responds to PCI
bus master memory cycles in the entire SDRAM address space to allow full access of
SDRAM from external PCI bus masters. This space is defined as a linear region, starting
at the lowest address (00000000h) and ending at the top of SDRAM, depending on the
amount populated in the system (a maximum of 256 Mbytes). The SDRAM controller’s
configuration registers are programmed with the amount of SDRAM in the system during
the initial boot process.

Some systems may require specific CPU address space that is normally defined as an
SDRAM region to be redirected to the PCI bus. An example application is a PCl-bus-based
VGA video card for PC/AT compatibility. In ElanSC520 microcontroller, this redirection is
programmed via the first two Programmable Address Region (PAR) registers (PAR 0 and
PAR 1). When this feature is used in a system, the ElanSC520 microcontroller's PCI host
bridge target shadows PAR 0 and PAR 1 and ignores accesses by external PCl bus masters
in the programmed address space if they are programmed for PCl bus in the TARGET field.

See Chapter 4, “System Address Mapping”, for further details of PCI host bridge target
address space.

Because the ElanSC520 microcontroller is configured as a PCI host bridge, the PCI bus
Base Address registers normally found in the PCI bus configuration space are not
implemented.

9-18

Elan™SC520 Microcontroller User’s Manual

PCI Bus Host Bridge AMD:'

9.5.4.2

9.5.4.3

9.5.4.4

PCIl Bus Command Support

As a PCI bus target, the ElanSC520 microcontroller's PCI host bridge treats the memory-
write-and-invalidate command the same as a memory-write cycle. When either of these
commands isissued by a PCI bus master, the PCI host bridge and system arbitration blocks
force the Am5,86 CPU's integrated cache to snoop the addresses prior to writing the data
to SDRAM. If the cache detects a modified cache line at the same address, it writes back
and invalidates the line. If the CPU is operating in write-through cache mode, the line is
simply invalidated and the data is written to SDRAM.

The PCI host bridge does not respond to configuration cycles or special cycles issued by
external PCI bus masters. Interrupt acknowledge cycles and special cycles are not
forwarded to the PCI bus.

DEVSEL Timing

When an external PCI bus master accesses the ElanSC520 microcontroller's SDRAM, the
PCI host bridge always asserts DEVSEL with medium timing (two clocks after FRAME is
asserted). The ElanSC520 microcontroller does not serve as a subtractive decode agent
on the PCI bus.

Delayed Transaction Support

External PCI bus master reads of the ElanSC520 microcontroller's SDRAM can be
configured to be delayed transactions This maximizes PCI bus efficiency by freeing up the
bus while the initial SDRAM read request is issued to the SDRAM controller.

When the Automatic Delayed Transaction Enable (T_DLYTR_ENB) field is set in the Host
Bridge Control (HBCTL) register (MMCR offset 60h), the PCI host bridge immediately
issues a retry to the external PCI bus master read cycle and begins requesting the data
from the SDRAM controller. The external PCI bus master read cycle is retried until any of
the requested data has been read into the target read FIFO. Only the first doubleword
requested needs to be read into the target read FIFO before the PCI host bridge completes
the delayed transaction instead of retrying it again. After the PCI host bridge responds to
the delayed transaction, it continues to prefetch data and provides all the data requested
(up to 64 doublewords maximum) by the external PCI bus master without disconnecting.

When a delayed transaction read cycle is pending (waiting for the originating external PCI
bus master to retry the transaction), all other read transactions are terminated with a retry.
The PCI host bridge supports one outstanding delayed transaction, so these retried
transactions are not latched. Write transactions, however, are allowed to complete and are
placed in the PCI host bridge target write FIFO. A delayed transaction discard timer is
provided so that a broken master does not deadlock the system. If, after 215 pcy clocks, a
master has not retried a delayed transaction, the transaction is discarded and an interrupt
can be optionally generated. The delayed transaction discard timer is fixed at 21° PCl clocks.

When external PCI bus master reads of ElanSC520 microcontroller's SDRAM are not
configured as automatic delayed transactions, the PCI host bridge tries to return the
requested data to the PCI bus master without issuing a retry. Wait states are inserted into
the transaction until the data is read from SDRAM. If the initial data cannot be returned in
32 clocks, the PCI host bridge terminates the transaction with a retry and latches the read
transaction as a delayed transaction to comply with the PCI Local Bus Specification,
Revision 2.2. Note that if any data is pending in the Am5,86 CPU-to-PCl posted-write latch,
it must be flushed before read data can be returned to an external PCI master by the PCI
host bridge target controller. In this case, the PCI host bridge immediately retries the
external PCI master read transaction and latches the request as a delayed transaction.

Elan™SC520 Microcontroller User’s Manual 9-19

AMDZ\

PCI Bus Host Bridge

9.5.4.5

9.5.4.6

The PCI host bridge retries any external PCI bus master write cycle when the write FIFO
is full. The PCI host bridge retries all external PCI bus master cycles (write and read) if the
address FIFO is full (see the Section 9.5.4.5).The PCI host bridge always disconnects after
64 consecutive doublewords are transferred to prevent any one PCI bus master from
monopolizing the bus and to guarantee sufficient CPU bus bandwidth.

Address FIFO

The PCl host bridge’starget controller includes an address FIFO that keeps track of address
and command requests made to the target controller. The address FIFO allows one
outstanding delayed read transaction and up to four posted writes, depending on the
ordering of the transactions.

m Ifthe address FIFO is empty (no latched transactions in the target controller) and a read
transaction is received prior to any posted writes, the read is latched and a delayed
transaction retry is issued. After this, up to four posted writes can be latched following
the read (for a total of five latched transactions in the FIFO).

m [f the address FIFO contains any posted write transaction (before a read transaction is
received), only a total of four transactions can be latched into the address FIFO. That
is, if the first posted transaction is a write, up to four transactions can be latched into the
address FIFO (three writes and one read, or four writes).

m |f four posted writes reside in the address FIFO, no delayed read transactions can be
latched. In this case, all read requests are retried (not latched into the address FIFO)
until one of the posted writes has completed internally.

m In all cases, only a maximum of one delayed read transaction can be latched into the
address FIFO. If two read transactions are received, the target controller only latches
the first one. The second (and subsequent) reads are not latched into the target
controller, even if the address FIFO is not full.

m Note that, even if the address FIFO is not full, but the data FIFO is already full, further
posted writes are not accepted.

The ElanSC520 microcontroller’s PCI host bridge complies to the PCI Local Bus
Specification, Revision 2.2, rules for transaction ordering to prevent deadlock conditions.

PCI Host Bridge FIFOs and Prefetching

The PCl host bridge target controller has a 64-doubleword write FIFO and posts writes from
external PCI bus masters to SDRAM. The PCI host bridge does not insert wait states into
an external PCI bus master write cycle by deasserting TRDY. If the write FIFO becomes
full during an external PCI bus master write transaction, the PCI host bridge issues a
disconnect to end the cycle. A maximum of four transfers can be posted (each transfer can
burst multiple data phases, but the ElanSC520 microcontroller’s target FIFOs store a
maximum number of 64 doublewords for all the posted writes).

The SDRAM controller’s write buffer can byte-merge, combine, and collapse data if enabled,
yielding additional performance of SDRAM writes from PCI bus masters. See Chapter 11,
“Write Buffer and Read Buffer”, for further details. However, the PCI host bridge does not
byte-merge, combine, or collapse data in the target write FIFO.

9-20

Elan™SC520 Microcontroller User’s Manual

PCI Bus Host Bridge AMD:'

9.5.4.7

9.5.4.8

The PCI host bridge as a target prefetches data from SDRAM in response to an external
PCI bus master read transaction. The read buffer in the SDRAM controller should be
enabled for optimal performance, especially during memory-read-multiple commands by
external PCI bus masters.

m For memory-read and memory-read-line commands, the PCI host bridge prefetches
data up to the next cache line (a cache line is four doublewords).

m Memory-read-multiple commands fill the target FIFO (64 doublewords).

Once the PCI host bridge has been granted access to the CPU bus, it will hold the bus until
it has prefetched up to the next cache-line boundary for memory-read and memory-read-
line commands, and 64 doublewords for memory-read-multiple commands. The PCI host
bridge may insert wait states before asserting TRDY for the first data phase. The PCI host
bridge can then burst one cache line with zero wait states. After each cache line, the PCI
host bridge can insert wait states by deasserting TRDY if the target read FIFO becomes

empty.

Note that, if the target read FIFO becomes empty after a cache-line boundary for memory-
read and memory-read-line commands or after 64 doublewords for a memory-read-multiple
command, the PCI host bridge issues a disconnect to end the transaction.

Burst Ordering

To provide optimal CPU performance during SDRAM accesses, the ElanSC520
microcontroller's SDRAM controller is designed to support Am5,86 CPU cache-line burst
ordering, but the PCI bus specifies linear burst ordering. Therefore, all PCI host bridge
accesses to SDRAM are cache-line-aligned (start on a four-doubleword boundary). If the
external PCI bus master read cycle was not cache-line-aligned, the PCI host bridge starts
requesting the SDRAM read from the address that the master issued and generates single-
phase data cycles until it becomes cache-line-aligned.

For example, if the external PCI bus master started a write with address 10008h and wrote
ten doublewords, the PCI host bridge would generate single, hon-burst write cycles to
address 10008h and 1000Ch. After these two write cycles, the transaction would be cache-
line-aligned, so the PCI host bridge would complete the transaction with burst cycles.

Maintaining Data Coherency

All external PCI bus master accesses to SDRAM are snooped by the Am5,86 CPU'’s cache,
which writes back and invalidates a cache line as appropriate. If the CPU detects a hit to
a modified line in its cache, the arbitration unit forces the PCI host bridge to relinquish the
Amb5,86 CPU bus to allow the cache line to be written back to SDRAM. If the cache is
configured in write-through cache mode, the line is simply invalidated and the PCI host
bridge is not forced off the bus for a write-back cycle.

In many systems that employ posting buffers, a potential data coherency problem exists
because of the delay between an external master write transaction and when SDRAM is
actually updated due to the write posting FIFO. The PCI bus complicates this potential
problem when PCI-to-PClI bridges are implemented in the system.

In ElanSC520 microcontroller, for example, if an external master writes a block of data into
SDRAM and then generates an interrupt request to the Am5,86 CPU to process the data,
it is important to prevent the Am5,86 CPU from attempting to read SDRAM before the
posted data has actually been written to SDRAM by the PCI host bridge’s posting-write
FIFO. The PCI bus specification recommends that the CPU perform a read to the
interrupting PCI bus device, to force all system posted write buffers to flush (including PCI
bus bridges).

Elan™SC520 Microcontroller User’s Manual 9-21

AMDZ\

PCI Bus Host Bridge

9.5.4.9

9.5.4.9.1

If the PCI host bridge target read FIFOs contain data from a previous memory-read
command that was obtained as part of a delayed transaction while a write to the same
memory address region occurs, the read FIFOs can optionally be purged to maintain
coherency by setting the T_ PURGE_RD_ENB bit in the Host Bridge Control (HBCTL)
register (MMCR offset 60h). The T_PURGE_RD_ENB bit must not be changed except
during PCI bus initialization after a system or programmable reset.

m Memory-read and memory-read-line commands generate a purge when the write
address is within the same cache line as the prefetched data. Note that the addresses
do not necessarily overlap in this case. For example, a memory-read command to 5008h
will prefetch 5008h and 500Ch. A memory-write command to 5000h will then cause a
purge because it is in the same cache line, even though the addresses do not overlap.

m Memory-read-multiple commands generate a purge if the write is in the same 64-
doubleword region as the prefetched data. In this case, exact addresses are compared.
Note that a write to the same 64-doubleword region causes a purge even if the prefetch
is not complete. If, for example, the host bridge is prefetching the 32nd doubleword on
the Am5,86 CPU bus, and a write comes into the 53rd doubleword (or any number

greater than 32 and less than 64, in this case), this write will cause a purge.

PCI Host Bridge Target Bus Cycles

This section describes in detail the cycles generated by an external PCI bus master for
which the ElanSC520 microcontroller PCI host bridge responds, and includes both the PCI
bus and the internal Am5,86 CPU bus. The PCI host bridge forwards cycles that are
destined to SDRAM from the PCI bus to the Am5,86 CPU bus.

The examples shown apply primarily to concurrent arbitration mode; there are a few
differences when operating in nonconcurrent arbitration mode. See Chapter 8, “System
Arbitration”, for further details on the arbitration modes.

Note that these are example cases only, and not all cases are shown. The diagrams are
functionally representative in nature, and should not be used to infer detailed timing
information. Note also that the synchronization between the CPU and PCI clock domains
is not shown in detail.

External PCI Bus Master Posted Write to SDRAM

Figure 9-14 shows an external PCI bus master writing seven doublewords to the ElanSC520
microcontroller's SDRAM. The first group of signals are the PClI bus signals, and the second
group are internal signals.

9-22

Elan™SC520 Microcontroller User’s Manual

PCI Bus Host Bridge AMDZ\

Figure 9-14 External PCI Bus Master Posted Write to SDRAM

CLKPCIIN
ADX
CBEX
FRAME
IRDY
TRDY

DEVSEL

hb_req
hb_gnt

Notes:

1 2 3 4 5 6 7 8 9 10—
— address X datal X_data2 X data3 K datad X data5 X data6 X data7 }——
{write.cmd ¥ bel W be2 }_ be3 ¥ be4 ¥ be5 Y be6 ¥ be7)

/
A\ /T
\ /T
\

The diagram includes the following internal signals:

e hb_req:

e hb_gnt:

PCI host bridge requesting the Am5,86 CPU bus to access the SDRAM controller.
PCI host bridge has been granted Am5,86 CPU bus and can access the SDRAM controller.

See Chapter 8, “System Arbitration”, for information on Am5,86 CPU bus arbitration.

The following sequence annotates the external PCI bus master posted write to SDRAM
shown in Figure 9-14.

Clock #1: An external PCI master initiates a write transaction to the ElanSC520
microcontroller's SDRAM.

Clock #3: The PCI host bridge always asserts DEVSEL with medium timing. In this
example, the write FIFO is not full, so TRDY is also asserted to accept the write data. If
either the write FIFO or the address FIFO had been full, then the PCI host bridge would
immediately issue a retry to the external master by asserting STOP instead of TRDY.

Clocks #4—#10: The write FIFO is not full, so TRDY remains asserted to accept the
write data. The PCI host bridge does not insert wait states into the PCI transaction by
deasserting TRDY. If the FIFO becomes full during the transaction but the external PCI
master indicates it is willing to burst more data (by keeping FRAME asserted), the host
bridge issues a disconnect by deasserting TRDY and asserting STOP (see

Section 9.5.4.9.3). The external master can insert wait states into the PCI transaction
by deasserting IRDY. The host bridge is posting the write data (it will be written to SDRAM
sometime later).

Clock #7: The PCI host bridge has synchronized the first PCI data phase (Clock #4)
and requests access to the SDRAM controller.

Clock #9: The SDRAM controller is granted to the PCI host bridge and the PCI bus data
can be written to SDRAM. The hb_gnt signal may be delayed if the Am5,86 CPU or GP-

DMA is accessing SDRAM.

Elan™SC520 Microcontroller User’s Manual 9-23

AMDZ\

PCI Bus Host Bridge

9.5.4.9.2

External PCI Master SDRAM Read (Delayed Transaction)

Figure 9-15 shows an external PCI bus master read transaction to the ElanSC520
microcontroller's SDRAM.

Figure 9-15 External PCI Master SDRAM Read (Delayed Transaction)

CLKPCIIN
ADX
CBEX
FRAME
IRDY
TRDY
DEVSEL
STOP

hb_req
hb_gnt

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 1718 19 20—
N\
—gddress} gddress} {dataT}data2Xdata3
—{cmd)__ bel cmd ¥ bel bé2 be3
\
A
/

The following sequence annotates the external PCI master SDRAM read shown in
Figure 9-15.

Clock #1: An external PCI bus master initiates a read transaction to ElanSC520
microcontroller's SDRAM.

Clock #3: The PCI host bridge target controller accepts the transaction by asserting
DEVSEL. TRDY is not asserted, because there is no data in the target read FIFO (this
is a new transaction).

Clock #4: The PCI host bridge target controller asserts STOP, signaling a retry to the
external PCI bus master. Because no data was transferred, the external PCI bus master
is required to retry the transaction. (This figure assumes that the ElanSC520
microcontrolleris configured for automatic delayed transactions.) The host bridge latches
the transaction information and will prefetch the requested read data. This is now a
delayed transaction, and the PCI bus master is required to relinquish bus ownership and
re-arbitrate to retry the cycle. If there is already a previous delayed transaction pending,
the current transaction will not be latched. Note that, in this example, STOP is asserted
for two clock periods, because a target is required to keep this signal asserted until
FRAME is deasserted.

Clock #7: The PCI host bridge has synchronized the delayed transaction request and
requests access to the SDRAM controller to prefetch the data requested by the external
PCI master.

Clock #8: The CPU bus is granted to the PCI host bridge, and the PCI bus data can be
read from SDRAM. The hb_gnt signal may be delayed if the Am5,86 CPU or GP-DMA
controller is accessing SDRAM. The host bridge prefetches up to the next cache line in
response to a memory-read or memory-read-line command and up to 64 doublewords
in response to a memory-read-multiple command.

9-24

Elan™SC520 Microcontroller User’s Manual

PCI Bus Host Bridge AMD:'

9.5.4.9.3

m Clock #12: The external PCl bus master retries the delayed transaction. While a delayed
transaction is pending, all other read transactions are retried by the host bridge (these
are not latched as delayed transactions). Write transactions, however, are allowed to
complete and are put into the write FIFO. If the external PCI master retries the delayed
transaction before the host bridge has read the first doubleword of data into the target
read FIFO, the host bridge issues another retry to the external PCI bus master (and
keeps issuing retries until the first doubleword of data has been read into the target read
FIFO).

m Clock #14: By now, the PCI host bridge has read in the first doubleword of data into the
target read FIFO and recognizes this transaction as the pending delayed transaction.
The host bridge asserts DEVSEL to claim the transaction.

m Clock #16: The PCI host bridge asserts TRDY for the first data phase of the transaction.
After the first data phase, the host bridge can burst up to the next cache-line boundary
without adding anymore wait states. After each cache line, the PCI host bridge may
insert wait states if the target read FIFO becomes empty.

m Clocks #17—#19: The external PCl master reads the data from the PCI host bridge.
(Although the figure shows it this way, note that SDRAM having the data by Clock #17
is quite optimistic.) The external PCI bus master can insert wait states into the transaction
by deasserting IRDY. Clock #19 is the last data requested by the external PCI bus master
(FRAME deasserted, IRDY asserted).

PCI Host Bridge Target Disconnect

Figure 9-16 shows the PCI host bridge target controller issuing a disconnect to an external
PCI bus master. This example shows a disconnect during an external PCI bus master write
cycle, but the mechanism is the same for external PCI bus master read cycles. The only
difference is that Clock #2 is a turnaround cycle on AD31-ADO bus. The PCI host bridge
issues a disconnect if:

m During an external PCI bus master write cycle, the write FIFO becomes full or 64
consecutive doublewords have been written by the bus master.

m During an external PCI bus master read cycle, the target read FIFO becomes empty—
Note that for memory-read and memory-read-line commands, the PCI host bridge can
burst up to the next cache-line boundary without disconnecting; for memory-read-
multiple commands, the PCI host bridge can burst 64 doublewords without
disconnecting. If the external PCI bus master wishes to burst beyond these limits, then
the PCI host bridge may issue a disconnect.

Elan™SC520 Microcontroller User’s Manual 9-25

AMDZ\

PCI Bus Host Bridge

Figure 9-16 PCI Host Bridge Target Disconnect

CLKPCIIN
ADx
CBEX
FRAME
IRDY
TRDY
DEVSEL
STOP

hb_req
hb_gnt

1 2 3 4 5 6 7 8 9 10—
address X datal X_data2 X data3
{ write cmdY bel X he2 X be3)

The following sequence annotates the PCI host bridge target disconnect shown in
Figure 9-16.

Clock #1: An external PCI bus master initiates a write transaction to ElanSC520
microcontroller SDRAM.

Clock #3: The PCI host bridge always asserts DEVSEL with medium timing and asserts
TRDY, signaling it is ready to accept data (provide data for external PCI bus master
reads).

Clocks #3—#4. Both TRDY and IRDY are sampled asserted, signaling a valid data phase.
External master write data will be accepted by the PCl host bridge (or the external master
will read data for external PCI bus master read cycles).

Clock #5: The PCI host bridge write FIFO is full (or the target read FIFO is empty for
external PCI bus master read cycles), so TRDY is deasserted and STOP is asserted,
signaling a disconnect. Because TDRY is deasserted, Clock #5 is the last valid data
phase. Note that FRAME is still asserted, signaling that the external PCI bus master is
requesting to burst more data.

Clock #6: The external PCI bus master deasserts FRAME in response to STOP being
sampled asserted. Because TRDY is deasserted, this is not a valid data phase and no
data will be transferred.

Clock #7: The external PCI bus master deasserts IRDY and the PCI host bridge
deasserts STOP and DEVSEL, ending the PCI bus transaction. The host bridge has
synchronized the first PCl bus data phase (Clock #3) and requests access to the SDRAM
controller.

Clock #9: The CPU bus is granted to the PCI host bridge, and the PCI bus data can be
written to SDRAM. The hb_gnt signal may be delayed if the Am5,86 CPU or GP-DMA

controller is accessing SDRAM.

9-26

Elan™SC520 Microcontroller User’s Manual

PCI Bus Host Bridge AMD:'

9.5.5

Interrupts

The PCI host bridge has one maskable interrupt request signal and one NMI signal routed
to the ElanSC520 microcontroller’s interrupt controller. These interrupt signals are shared
by the arbiter, and PCI master and target controllers of the host bridge. Each interrupt
source (both master and target sources) can be individually programmed to generate a
maskable interrupt instead of a non-maskable interrupt request.

The following conditions can be programmed to generate an interrupt by the PCl host bridge
master controller:

m Detected parity error during a read cycle

m Received parity during a write cycle or during the address phase of a read cycle
m Retry time-out counter expired

m Cycle was terminated with master abort

m Cycle was terminated with target abort

m System error (SERR) pin asserted by PCI bus device

When an interrupt is generated, the address of the cycle during which the interrupt condition
was detected is stored in the Host Bridge Master Interrupt Address (MSTINTADD) register
(MMCR offset 6Ch), and the command is stored in the Host Bridge Master Interrupt Status
(HBMSTIRQSTA) register (MMCR offset 68h). If multiple interrupt conditions are pending,
the registers store the information for the first interrupt condition only. If multiple interrupts
are pending, there is no indication to which interrupts the Master Interrupt Command
Identification (M_CMD _IRQ_ID) and Master Interrupt Address ldentification
(M_AD_IRQ_ID) fields correspond. Status bits in the Status/Command (PCISTACMD)
register (PCl index 04h) are also set when error conditions are detected. These bits are
set whenever the error condition is detected, regardless of the interrupt enable bits.

The following conditions can be programmed to generate an interrupt by the host bridge
target controller:

m Detected parity error during a data phase of a write cycle
m Detected parity error during an address phase

m Delayed transaction time-out—21° clocks have expired without an external PCI master
retrying a delayed transaction

When an interrupt is generated, the REQ/GNT number of the PCI bus master that caused
the error is stored in the Host Bridge Target Interrupt Status (HBTGTIRQSTA) register
(MMCR offset 64h). If multiple interrupt conditions are pending, the Target Interrupt
Identification (T_IRQ_ID) field stores only the information for the first interrupt condition. If
multiple interrupts are pending, there is no indication to which interrupt the T_IRQ_ID field
corresponds. The appropriate status bits in the Status/Command (PCISTACMD) register
(PClindex 04h) are also setwhen error conditions are detected. These bits are setwhenever
the error condition is detected, regardless of the interrupt enable bits.

See Chapter 15, “Programmable Interrupt Controller”, for further details on the
programming and routing of interrupt requests. See Chapter 8, “System Arbitration”, for
further details on arbitration.

Elan™SC520 Microcontroller User’s Manual 9-27

AMDZ\

PCI Bus Host Bridge

9.5.6

9.5.6.1

9.5.6.2

Latency
PCl bus latency issues are described separately for the CPU and external PCl bus masters.

m Master latency refers to the case when the ElanSC520 microcontroller's Am5,86 CPU
is the master on the PCI bus.

m Targetlatency refers to the case when the ElanSC520 microcontroller is a PCl bus target
accessed by external PCI bus masters.

Master Latency

The posted write buffer allows Am5,86 CPU memory-write cycles to complete without
incurring the PCI bus transaction latency. Any other cycle between the CPU and the PCI
bus (memory read, I/0O write, I/O read) must complete on the PCI bus before ready is
returned to the Am5,86 CPU. Note that write posting must be disabled while the ElanSC520
microcontroller is operating in nonconcurrent arbitration mode. See Chapter 8, “System
Arbitration”, for details on nonconcurrent mode arbitration.

The target being accessed may retry the Am5,86 CPU cycle (target busy) multiple times,
which would delay the Am5,86 CPU. This performance penalty can be limited by
configuration of the Am5,86 CPU using the Master Retry Time-Out (M_RETRY_TO) field
in the Master Retry Time-Out (PCIMRETRYTO) register (PCI index 41h), which limits the
number of times the PCI host bridge retries a transaction before returning the rdy signal to
the Am5,86 CPU. Note that the master retry count configuration must not be changed
except during PCI bus initialization after a system or programmable reset.

The Am5,86 CPU typically performs non-burst read transactions to the PCI bus, because
PCI bus memory is noncacheable (write transactions to PCl are always non-burst). There
are a few cases when the CPU bursts up to two doublewords on a read transaction. For
simplicity, in these cases, the PCI host bridge breaks up any Am5,86 CPU burstread cycles
into single doubleword read transactions on the PCI bus, which also slows down the Am5, 86
CPU read performance to the PCI bus. Because the PCI host bridge master controller
performs single data phase transactions only, the master latency timer is not implemented.

Target Latency

Write posting and delayed transactions in the PCI host bridge target controller allow external
PCI bus master cycles to complete without incurring SDRAM access latency. Without write
posting and delayed transactions, the PCI host bridge target controller would insert wait
states, while arbitrating for use of the SDRAM controller.

Delayed transaction support allows this time spent arbitrating for the CPU bus and the
SDRAM controller transaction to be reallocated to another bus master, rather than forcing
the first bus master to remain in a long wait state period. Instead, the first bus master’s
request is latched and placed in the delayed transaction queue for processing by the PCI
host bridge, and the bus master is forced off of the PCI bus with a retry, at which point the
PCI bus arbiter may grant the bus to another PCI bus master. The second PCI bus master
could perform a peer-to-peer transfer or memory write to SDRAM while the PCI host bridge
continues to process the first bus master’s request.

Delayed transactions avoid the wasted bus bandwidth that may occur if the PCl host bridge’s
response to the transaction exceeded the specified 32 PCI bus clocks (16 for non-host
bridge devices), at which point the PCI bus master would be retried anyway (thus wasting
16-32 PCI bus clocks).

9-28

Elan™SC520 Microcontroller User’s Manual

PCI Bus Host Bridge AMD:'

9.6

The concurrent nature of ElanSC520 microcontroller's system architecture is such that a
SDRAM read request from an external PCI master may be delayed. The reasons for this
delay are:

m The Am5,86 CPU may be currently accessing ROM, GP bus, or SDRAM.
m The SDRAM controller may be currently servicing a SDRAM refresh.

m A DMA transaction may be in progress between a GP-DMA initiator and SDRAM. Such
transactions are variable in length and subject to the programmed DMA transfer mode.
For example, in block or demand mode, the DMA transfer cannot be preempted.

Note: Large GP Bus DMA transfers in demand or block mode, or very slow GP bus cycles
(initiated via programmable GP bus timing, or by deasserting the GPRDY signal) can cause
the PCI host bridge target controller to violate the 10 us memory write maximum completion
time limit set in the PCI Local Bus Specification, Revision 2.2. In PCI bus 2.2-compliant
designs, software must limit the length of GP bus cycles and GP bus DMA demand- or
block-mode transfers.

Delayed transactions canincrease Am5,86 CPU and GP-DMA latency to SDRAM because
of prefetching in response to memory-read-multiple commands. For example, when a
prefetch of 64 doublewords occurs during a PCI bus master memory-read-multiple cycle
of the ElanSC520 microcontroller's SDRAM, neither the Am5,86 CPU or the GP-DMA
controller has access to the CPU bus. After the initial prefetch of 64 doublewords, the PCI
host bridge relinquishes ownership of the CPU bus.

INITIALIZATION

The PCI bus RST signal, when asserted, resets the ElanSC520 microcontroller's PCI host
bridge, as well as any external PCI bus devices.

The RST signalis asserted in response to a system reset (see “System Reset” on page 6-4)
or by setting the PCI_RST bit in the Host Bridge Control (HBCTL) register (MMCR offset
60h). These reset sources assert and deassert the RST signal asynchronously to the PCI
bus clock.

When the RST signal is asserted, the PCI host bridge master controller and target controller
state machines go to their idle states, and the host bridge FIFOs are purged. The PCI host
bridge register bits are reset to their default states due to system reset, but the PCI_RST
bit does not reset the PCI host bridge configuration registers or the host bridge status bits
(see the register descriptions in the Elan™SC520 Microcontroller Register Set Manual,
order #22005).

After reset, the PCI host bridge target controller is disabled, but the host bridge responds
to configuration transactions from the Am5,86 CPU. Note that the PCI host bridge master
controller is always enabled.

After reset the following steps should be taken to configure the PCI host bridge. Configure
the PCI host bridge first; then, configure the external PCI bus devices.

1. Configure the PCI host bridge.

a. Program the desired ElanSC520 microcontroller arbitration mode, including
concurrency mode and PCI bus master arbitration priorities, etc. See “Initialization”
on page 8-22, for more detailed information on arbitration.

b. Program the Programmable Address Region (PAR) registers, if required. See
Chapter 4, “System Address Mapping”, for details on programming PCI bus memory
space.

Elan™SC520 Microcontroller User’s Manual 9-29

AMDZ\

PCI Bus Host Bridge

c. Program the ElanSC520 microcontroller-specific PCI host bridge configuration (write
posting, retry time-out counter, interrupts, etc.). Note that write-posting must be
disabled while operating in nonconcurrent arbitration mode. See Chapter 8, “System
Arbitration”, for further details on nonconcurrent mode arbitration.

d. Program the standard PCl bus configuration registers. See “Configuration Information”
on page 9-9 for more information.

2. Configure the external PCI bus devices.

In general, PCI host bridge configuration bits should not be changed except during a PCI
bus initialization after a system or programmable reset.

A PCI bus 2.2-compliant target is not required to meet the normal initial latency time limit
if it is accessed during the 22° clock periods (about one second) following RST signal
deassertion. During this time, an addressed target is permitted to do any of the following:

m [nitiate a retry.
m Claim the access and hold in wait states until ready to respond.

m Ignore the access.

A device that ignores the access is essentially not recognized if the initialization software
tries to configure it too soon after RST is deasserted, resulting in an incomplete system
configuration. To support such devices, the initialization software might need to include a
delay to ensure that 22° clock periods pass before PCI devices are configured.

9-30

Elan™SC520 Microcontroller User’s Manual

AMD X\

10 SDRAM CONTROLLER

10.1

10.2

10.3

OVERVIEW
The ElanSC520 microcontroller includes an integrated SDRAM controller.

Features include:

m SDRAM (synchronous DRAM) support
m 3.3-V DC 66-MHz SDRAM or faster (16 Mbit through 256 Mbit)

m Achieves 3-1-1-1 read bursts on SDRAM (page hit for all device speed grades with
CAS latency (C) = 2)

m Support for up to four banks, each bank independently programmed for size and
symmetry (symmetric and asymmetric SDRAMS)

m Up to 256 Mbytes of SDRAM

m Optional SDRAM refresh during reset

m SDRAM auto refresh

m Error Correction Code (ECC) support (single-bit correct/multi-bit detect)

m SDRAM write buffering that supports write-merging, write-collapsing, and read-merging
m Read buffer with read-ahead feature for SDRAM read prefetching

m Read-around-write support that gives read priority over posted writes when the write
buffer is enabled

BLOCK DIAGRAM

The SDRAM controller and its interface to the system SDRAM, along with the write buffer
and the read buffer, are shown in Figure 10-1. (The write buffer and read buffer are described
in Chapter 11.) Figure 10-2 shows a more detailed block diagram of the SDRAM controller
subsystem.

SYSTEM DESIGN
The SDRAM controller of the ElanSC520 microcontroller supports SDRAM devices only.

Figure 10-3 illustrates the connection of the SDRAM signals from the ElanSC520
microcontroller to the SDRAM banks.

Although the data bus width is only 32-bits in the ElanSC520 microcontroller, 64-bit (168-
pin DIMMs) memory modules can be used. Each 168-pin DIMM can be used as a pair of
banks. By appropriately connecting the SCS3-SCS0 signals to the SDRAM DIMM module,
168-pin modules can be used in an ElanSC520 microcontroller system.

Figure 10-4 shows an example configuration of a 168-pin SDRAM DIMM used as two banks.
For the DIMM in this example, 8-bit devices are used. A DIMM configured for ECC is not
shown.

Elan™SC520 Microcontroller User’s Manual 10-1

AMDZ\

SDRAM Controller

Figure 10-1

SDRAM Controller Block Diagram

Elan™SC520 Microcontroller

Read Buffer

CPU Interface
Address Decode

Write Buffer

»

SDRAM

Controller

32 kHz

66 MHz

33 MHz

Clock Generator

MA12-MAO

BA1-BAO

SCS3-SCS0

vVVvVY

SCASB-SCASA

v

SRASB-SRASA

SDQM3-SDQMO

v

SWEB-SWEA

v

CLKMEMOUT

v

CLKMEMIN

A

MECC6-MECCO

A A

v

MD31-MDO

32 kHz

32KXTAL2-32KXTAL1

A 4

33 MHz

33MXTAL2-33MXTAL1

10-2

Elan™SC520 Microcontroller User’s Manual

SDRAM Controller

AMDA

Figure 10-2 Detailed Block Diagram of SDRAM Controller

Elan™SC520 Microcontroller

MA12-MAO o
/ L
MA Gen. BA1-BAO ~
/ L
x5_addr[27-2] =~c5 =~ch
= SCS3-SCS0
? Page/Bnk 'l> >
32 kHz N SCASB-SCASA
l/ - L
x5_control N SRASB-SRASA
33 MHz Control % -’
1 N SWEB-SWEA
V Ll
66-MHz PLL l NG CLKMEMOUT
Vv
x5 be[3-0]
| —— M N SDQM3-SDQMO,
be3-be0) g »
Qe \\rite Buffer data[31.—0]
MD31-MDO
x5_data[31-0] I j“ . >
Read Buffer ——[
<5 data[31-0] e — Ece
K Chec
MECC6-MECCO
L
ECC
Gen.
¢ A CLKMEMIN
 Interrupts N
|
Notes:
SDRAM controller trace and test logic is not shown.
Elan™SC520 Microcontroller User’s Manual 10-3

AMDZ\

SDRAM Controller

Figure 10-3 SDRAM Bank Configuration

MD31-MDO MECC6-MECCO
\
MA12-MAO, .
BA1-BAO l 4 v v SRASB
< » N D[38:32] D[31:24] i D[23:16] i D[15:8] D[7:0]
R = RAS¢——90
SCS3 d G CAS<
» =8 DQM[3]* DQM[3] | DQM[2] | DQM[1] DQMI0] B
SDQM3— i |
soQMo__ 1 1 1 1
SWEB
swes_| | l — 7
| D[38:32] D[31:24] ' D[23:16] ' D[15:8] D[7:0]
SCs2 I l)
DOMI3]* DOM[3] ! DOM[2] ! DQM[1] . DQM[0] CAS‘_AT
® T T T T SCASB
l ¢ ¢ ¢ SRASA
D[38:32] D[31:24] ' D[23:16] ' D[15:8] D[7:0]
scst : I o
DQMI3* DQM[3] DQM[2] ! DQM[1] | DQM[o] CAS<
| r N N
v v v
I D[38:32] D[31:24] ; D[23:16] i D[15:8] D[7:0]
N = RAS«
SCS0 g CAS.
» = DQM[3]* DQMI[3] ! DQM[2] ! DOM[1] = DQMIO] CA&—T
T T T T SCASA
Notes:

*ECC is optional. Since the entire doubleword is always written to the SDRAM during a read-modify-write operation
(see “Error Correction Code (ECC)” on page 10-16), any one of the four SDQM signals can be connected to the
DOM of the device that stores the 7-bit check word.

10-4

Elan™SC520 Microcontroller User’s Manual

SDRAM Controller

AMDA

Figure 10-4 Example Configuration of a 168-Pin SDRAM DIMM

MA12-MAO,
BA1-BAO

MD31-MDO

l DQ63-DQ32

l DQ31-DQO

¢
SDQM3 | SDQM2 SDQM1 SDQMO
SCASB SCASA
SRASB SRASA
SWEB SWEA
SCs1 SCSO0
10.3.1 SDRAM Pins

The SDRAM interface pins are dedicated to supporting SDRAM devices only.

Four chip select signals, SCS3-SCSO0, are provided for independent bank selection.

The SRASA-SRASB, SCASA-SCASB, and SWEA-SWEB signals are device command
signals that are encoded by the SDRAM controller to send a command to the SDRAM
devices. Each device in the array must sample these signals.

m Since this may result in heavy loading, two SRAS and two SCAS signals are provided
to allow splitting load capacitance on these pins among the banks.

Elan™SC520 Microcontroller User’s Manual

10-5

AMDZ\

SDRAM Controller

10.3.2

— For example, banks 0 and 1 can share the SRASA and SCASA signal.
— Likewise, banks 2 and 3 can share the SRASB and the SCASB signal.
m Two SWE signals are also provided to alleviate single pin loading.

— For example, banks 0 and 1 can share the SWEA signal, and banks 2 and 3 can share
the SWEB signal.

The four SDQM lines, SDQM3-SDQMO, provide byte masking.

m Each of the four SDQM3-SDQMO signals is associated with one byte of four throughout
the array. Each SDQMx signal provides an input mask signal for write accesses and an
output enable signal for read accesses.

See Figure 10-3 on page 10-4, which illustrates the connection of SDRAM signals from the
ElanSC520 microcontroller to the external SDRAM banks. Since the SDRAM controller
shares the MD31-MDO data bus with the ROM/Flash controller, the SDRAM controller
guarantees the SDQM3-SDQMO signals are forced inactive to make sure the SDRAM
devices do not contend with the ROM or Flash devices that may share the data bus.

SDRAM Clocking

The SDRAM device’s clock is sourced from the SDRAM controller interface of the
ElanSC520 microcontroller. As shown in Figure 10-1 on page 10-2, there are two clock
pins dedicated for the SDRAM interface.

m CLKMEMOUT is a 66-MHz clock.
m CLKMEMIN must be a direct feedback version of CLKMEMOUT.

The SDRAM controller’s data buffers use CLKMEMIN to latch read data coming from the
SDRAM devices. CLKMEMIN is used to compensate for delays associated with board
loading and external buffering (to allow for read data flight time from the SDRAM device).
The allowable delay between CLKMEMOUT and CLKMEMIN is —0.5 to +6.0 ns.

The following describes a typical scenario for SDRAM systems used with the ElanSC520
microcontroller. These are general guidelines to demonstrate system considerations and
are not intended for use as system implementations.

The CLKMEMOUT pin has a 24-mA driver and is capable of driving a 50-pF load directly,
without requiring an external clock driver/buffer and still remain under the maximum
allowable delay of 6 ns. A CLKMEMOUT load above 50 pF may result in delays greater
than 6 ns that could jeopardize data integrity. The 50-pF load includes all loads presented
to the CLKMEMOUT pin such as board routing (between CLKMEMOUT and CLKMEMIN),
DIMM connector load, and SDRAM device load.

Table 10-1 shows estimated bank loads as they pertain to SDRAM device data widths. As
shown in Table 10-1, a bank composed of 4-bit devices presents a greater load to the
CLKMEMOUT pin than a bank composed of 8-bit devices. This table does notinclude board
or connector loads.

Table 10-1

SDRAM Clock Loading Estimates Based on Device Width

Device Width
4-Bit 8-Bit 16-Bit 32-Bit
Device count (per bank) 8 4 2 1
Total SDRAM clock loading (pF) 32 16 8 4

10-6

Elan™SC520 Microcontroller User’s Manual

SDRAM Controller AMDZ\

Figure 10-5 shows a lightly loaded system. Typically, this delay can be implemented as fast
buffers, capacitors, series resistors, etc. or as a short.

Figure 10-5 SDRAM Clock Generation

CLKMEMOUT

SDRAM -

Controller Delay | |
CLKMEMIN _
SDRAM Bank

Elan™SC520
Microcontroller

Figure 10-6 shows an example of a two-bank SDRAM system that uses an external clock
driver. The clock driver is used to buffer CLKMEMOUT to support the load of multiple banks
of SDRAM. A buffered version of CLKMEMOUT is returned on CLKMEMIN to compensate
for the clock skew presented by the clock driver.

Figure 10-6 Alternate SDRAM Clock Generation with External Clock Driver

Drivers

CLKMEMOUT

SDRAM Bank

SDRAM
Controller

SDRAM Bank

Y&V %

CLKMEMIN

Elan™SC520
Microcontroller

The delays that the system designer must take into consideration are identified by this
equation:

Tac + Tskew + Tek b *+ Tp b <= Tck
where:
Tac : Access time of SDRAM device (not impacted by board design)
Tskew: The delay between CLKMEMOUT to CLKMEMIN
Tck_Lp: Additional clock delay due to loading
Tp Lp: Data delay due to loading

Tck: SDRAM memory clock

See the Elan™SC520 Microcontroller Data Sheet, order #22003, for timing tables and
additional timing diagrams.

Elan™SC520 Microcontroller User’s Manual 10-7

AMDZ\

SDRAM Controller

10.3.3

SDRAM Loading

Table 10-2 through Table 10-5 show estimated capacitances for the SDRAM devices that
the ElanSC520 microcontroller can support. (See Table 10-8 on page 10-13 for a listing of
the SDRAM devices supported by ElanSC520 microcontroller.) The tables are broken up
for SDRAM device data width for clarity. The purpose of these tables is to identify SDRAM
loading as it applies to various bank configurations. The ElanSC520 microcontroller
provides some flexibility in signal drive strength to allow the user to optimize performance,
depending on the SDRAM array configuration.

In the estimated capacitance tables, the input capacitance of SRASx, SCASx, SWEX, MAX,
BAXx, SDQMx, and SCSx for a single device was assumed to be 5 pF. 4 pF was used for
the CLK signal. The MDx signals are assumed to be 6 pF. These tables do not account for
board trace capacitance. It is assumed in these tables that both pins provided for a control
signal, e.g., SRASA-SRASB, SCASA-SCASB, and SWEA-SWEB are split across banks
evenly.

As can be seen in the tables, a 4-bank configuration of 16-bit devices has a loading of less
than 50 pF for any signal, but for a 4-bank configuration of 4-bit devices, the capacitance
of the interface increases. The ElanSC520 microcontroller provides programmable drive
strength buffers on all address, data, and control signals to support varying SDRAM device
loads. See “SDRAM Control Configuration” on page 10-18 for more details.

Table 10-2

Estimated Capacitance (4-Bit SDRAM Devices)

Number |CLK SRASx | SCASx |SCSx SWEX SDQMx | MAX/BAX | MDx
of 32-Bit | Loading | Loading | Loading | Loading | Loading | Loading | Loading |Loading
Banks | (pF) (PF) (PF) (PF) (PF) (PF) (PF) (PF)

1 32 40 40 40 40 10 40 6

2 64 40 40 40 40 20 80 12

3 96 80 80 40 80 30 120 18

4 128 80 80 40 80 40 160 24

Notes:

Capacitive loads shown in the table above are derived from an estimated SDRAM pin capacitance
value of 5 pF for SRASx, SCASx, SWEx, MAx, BAx, SDQMXx, and SCSx; 4 pF for the CLK signal;
and 6 pF for the MDx signals, per device.

Table 10-3

Estimated Capacitance (8-Bit SDRAM Devices)

Number |CLK SRASx | SCASx |SCSx SWEX SDQMx | MAX/BAX | MDx

of 32-Bit | Loading | Loading | Loading | Loading | Loading | Loading | Loading |Loading

Banks | (pF) (PF) (PF) (PF) (PF) (PF) (PF) (PF)

1 16 20 20 20 20 5 20 6

2 32 20 20 20 20 10 40 12

3 48 40 40 20 40 15 60 18

4 64 40 40 20 40 20 80 24
Notes:

Capacitive loads shown in the table above are derived from an estimated SDRAM pin capacitance
value of 5 pF for SRASx, SCASx, SWEx, MAx, BAx, SDQMXx, and SCSx; 4 pF for the CLK signal;
and 6 pF for the MDx signals, per device.

10-8

Elan™SC520 Microcontroller User’s Manual

SDRAM Controller AMDZ\

Table 10-4 Estimated Capacitance (16-Bit SDRAM Devices)
Number |CLK SRASx | SCASx |SCSx SWEX SDQMx | MAX/BAX | MDx
of 32-Bit | Loading | Loading | Loading | Loading | Loading | Loading | Loading |Loading
Banks | (pF) (PF) (PF) (PF) (PF) (PF) (PF) (PF)
1 8 10 10 10 10 5 10 6
2 16 10 10 10 10 10 20 12
3 24 20 20 10 20 15 30 18
4 32 20 20 10 20 20 40 24
Notes:
Capacitive loads shown in the table above are derived from an estimated SDRAM pin capacitance
value of 5 pF for SRASx, SCASx, SWEx, MAx, BAx, SDQMx, and SCSx; 4 pF for the CLK signal;
and 6 pF for the MDx signals, per device.
Table 10-5 Estimated Capacitance (32-Bit SDRAM Devices)

Number |CLK SRASx | SCASx |SCSx SWEX SDQMx | MAX/BAX | MDx

of 32-Bit | Loading | Loading | Loading | Loading | Loading | Loading | Loading |Loading
Banks | (pF) (PF) (PF) (PF) (PF) (PF) (PF) (PF)

1 4 5 5 5 5 5 5 6

2 8 5 5 5 5 10 10 12

3 12 10 10 5 10 15 15 18

4 16 10 10 5 10 20 20 24
Notes:

Capacitive loads shown in the table above are derived from an estimated SDRAM pin capacitance
value of 5 pF for SRASx, SCASx, SWEx, MAx, BAx, SDQMx, and SCSx; 4 pF for the CLK signal;
and 6 pF for the MDx signals, per device.

As can be seen clearly from the capacitance tables, as more SDRAM devices are connected
to the SDRAM controller interface signals on the ElanSC520 microcontroller, loading on all
these signals increases. Note that the numbers reflect only the actual device capacitance,
and not circuit board trace or buffer capacitance.

The SDRAM controller’s data bus (MD31-MDO) is shared with the ROM/Flash controller.
It is advisable to consider loading issues on the MD31-MDO bus when both SDRAM and
ROM/Flash devices are installed. Heavy loading by SDRAM and ROM/Flash devices may
slow down the SDRAM timings and cause data corruption.

When ECC devices are not installed, it is advisable to add individual 10-Kohm pulldown
resistors on the MECC6-MECCO bus to prevent the bus from floating during read access.

Elan™SC520 Microcontroller User’s Manual 10-9

AMDZ\

SDRAM Controller

10.4 REGISTERS
A summary listing of the registers used to control the SDRAM configuration are shown in
Table 10-6.
Table 10-6 SDRAM Controller Registers—Memory-Mapped
MMCR
Offset
Register Mnemonic Address Function
SDRAM Control DRCCTL 10h Operation mode select, refresh enable, refresh
rate select, SDRAM write buffer test mode
enable
SDRAM Timing Control DRCTMCTL 12h RAS-to-CAS delay, RAS precharge, CAS
latency
SDRAM Bank Configuration | DRCCFG 14h Bank count select, address column width
requirements for each bank
SDRAM Bank 0-3 Ending DRCBENDADR | 18h Independent bank ending configurations and
Address enables for banks 0, 1, 2 and 3
ECC Control ECCCTL 20h ECC enable, interrupt enable for single-bit and
multi-bit error detection
ECC Status ECCSTA 21h Single-bit and multi-bit error status
ECC Check Bit Position ECCCKBPOS 22h ECC data bit positionin check bit or data bit fields
ECC Check Code Test ECCCKTEST 23h ECC check code override for test and error
handler development
ECC Single-Bit Error Address | ECCSBADD 24h Address where single-bit ECC error occurred
ECC Multi-Bit Error Address | ECCMBADD 28h Address where multi-bit ECC error occurred
Drive Strength Control DSCTL C28h I/O pad drive strength for SCS3-SCSO0,
SRASA-SRASB, SCASA-SCASB, SWEA-
SWEB, SDQM3-SDQMO0, MA12-MAO, BA1-
BAO, MD31-MD0O, MECC6-MECCO
ECC Interrupt Mapping ECCMAP D18h ECC interrupt mapping to any of 22 available
interrupt channels or NMI, ECC NMI enable
control
Reset Configuration RESCFG D72h Programmable SDRAM retention reset
(PRGRESET pin enable)
Reset Status RESSTA D74h Reset source status: PRGRESET pin

10-10

Elan™SC520 Microcontroller User’s Manual

SDRAM Controller AMDZ\

10.5

10.5.1

OPERATION

The ElanSC520 microcontroller supports up to four 32-bit banks of SDRAM, with a
maximum capacity of 256 Mbytes. This integrated SDRAM controller interfaces gluelessly
to most commodity synchronous DRAM (SDRAM) devices. Mixed symmetries are
supported across all four banks.

The ElanSC520 microcontroller supports a column boundary method to accept a wide
variety of SDRAM devices. The column boundary method requires only the device’s column
address width to define the device’s page size and symmetry.

The symmetry of a device refers to its organization as defined by the number of columns
and the number of rows.

m A device is termed symmetric if the number of columns and rows is equal (i.e., a square
organization).

m A device is termed asymmetric if the number of rows exceeds the number of columns
(i.e.,arectangular organization). No devices exist where the number of columns exceeds
the number of rows.

The column boundary method allows the user to configure the ElanSC520 microcontroller
to work with 16-Mbit, 64-Mbit, 128-Mbit, and 256-Mbit SDRAM densities (both 2-bank and
4-bank internal architectures) requiring 8-bit through 11-bit column address bits.

Error Correction Code (ECC) is also supported for SDRAM devices to ensure data integrity
for these high-speed devices.

SDRAM Support

The ElanSC520 microcontroller sources a 66-MHz clock (CLKMEMOUT) to drive the
SDRAM devices. An external clock driver can be used to buffer this clock output for heavily
loaded systems. A return clock input (CLKMEMIN) is provided to control clock skew. See
“SDRAM Clocking” on page 10-6 for detailed information on SDRAM clocking. Although
the ElanSC520 microcontroller sources a 66-MHz clock, faster SDRAM devices are
supported (83-MHz, 100-MHz, 125-MHz, etc.).

The SDRAM controller supports 16-Mbit, 64-Mbit, 128-Mbit, and 256-Mbit SDRAM
densities with either 2-bank or 4-bank internal architectures.

m A CAS latency (C|) option of either 2T or 3T is supported, where T refers to a 15-ns
clock period when a 33.333-MHz crystal is used.

m SDRAM devices mustbe configured for a fixed interleaved burst length of four for reads
and single writes.

See “SDRAM Control Configuration” on page 10-18 for detailed information on SDRAM
configuration timing options.

The SDRAM controller services read and write requests on behalf of:
= Am5,86 CPU

m PCI masters

m GP-DMA controller

With the exception of ECC read-modify-write cycles (due to SDRAM writes of less than a
doubleword when ECC is enabled), all read requests to SDRAM occur as a read burst of
four cycles at the interface, regardless of the amount of data requested by a master.

Elan™SC520 Microcontroller User’s Manual 10-11

AMDZ\

SDRAM Controller

During read-modify-write cycles, the SDRAM burst read portion of the transaction is
terminated early by the write cycle. This is independent of the enable state of the read-
ahead feature of the read buffer, which is provided to increase read performance by
prefetching data from SDRAM. See “Buffering” on page 10-17 for more information on the
read buffer and associated read-ahead feature.

Write requests to SDRAM always occur as single data transfers, regardless of the amount
of data written by a master. When the write buffer is enabled, all write transactions to SDRAM
are initiated by the write buffer. The write buffer features write merging, write collapsing and
read merging. See “Buffering” on page 10-17 for more information on the write buffer.

10.5.2 SDRAM Addressing
The ElanSC520 microcontroller asserts one of the four chip select signals, SCS3-SCSO0,
during access to one of the four memory banks. Table 10-7 shows the SDRAM memory
address as a function of the system address for SDRAM devices.
The mapping of the system address into memory row and column addresses is influenced
by the column address configuration provided for each bank.
m On page misses, a row address followed by a column address is generated during an
SDRAM access.
m On page hits, only a column address is generated during an SDRAM access.
Table 10-7 shows the ElanSC520 microcontroller address mapping.
Table 10-7 Address Mapping to MAx Signals for SDRAM Devices
SDRAM (16 Mbit—256 Mbit)
Bank
SDRAM Configuration Selection MAX Pin Mapping
Column Address
Width BAl1 |BAO |12 |11 |10 9 8 7 6 5 4 3 2 1 0
8 2-bank | Row 24 10 23 (22|13 |12 11|21 20|19 |18 |17 | 16 | 15| 14
Column 24 10 PC 9 8 7 6 5 4 3 2
4-bank | Row 22 10 24 | 23|13 |12 |11 |21 20|19 |18 |17 | 16 | 15| 14
Column 22 10 PC 9 8 7 6 5 4 3 2
9 2-bank | Row 25 11 24 | 23 |13 |12 |22 |21 |20 |19 |18 | 17 | 16 | 15 | 14
Column 25 11 PC |11 | 10| 9 8 7 6 5 4 3 2
4-bank | Row 23 11 25 (24 |13 |12 | 22|21 |20 |19 |18 |17 | 16 | 15 | 14
Column 23 11 25 | 24 | PC 10 | 9 8 7 6 5 4 3 2
10 | 2-bank | Row 26 12 25 (24 |13 |23 | 22|21 20|19 |18 |17 | 16 | 15| 14
Column 26 12 PC |11 | 10| 9 8 7 6 5 4 3 2
4-bank | Row 24 12 26 | 25|13 | 23 | 22|21 |20 |19 |18 |17 | 16 | 15 | 14
Column 24 12 PC |11 | 10| 9 8 7 6 5 4 3 2
11 | 2-bank | Row 27 13 26 | 25|24 | 23| 22|21 20|19 |18 |17 | 16 | 15| 14
Column 27 13 12 |PC| 11 |10 | 9 8 7 6 5 4 3 2
4-bank | Row 25 13 27 | 26 | 24 | 23 | 22 |21 |20 |19 |18 | 17 | 16 | 15 | 14
Column 25 13 12 |PC| 11 |10 | 9 8 7 6 5 4 3 2

Notes: PC refers to SDRAM precharge signaling. BA1-BAO are the SDRAM Bank Address signals.

10-12

Elan™SC520 Microcontroller User’s Manual

SDRAM Controller AMDZ\

10.5.2.1

Supported SDRAM Devices

The ElanSC520 microcontroller supports the SDRAM organizations listed in Table 10-8.
(Note that SDRAM devices requiring less than 11 row address bits are not supported, and
are not included in the table.)

This table includes all possible device organizations supported by the column boundary
method, including those that may not be available at this time. As shown, the column
boundary method allows the user to configure the ElanSC520 microcontroller to work with
16-Mbit, 64-Mbit, 128-Mbit, and 256-Mbit SDRAM densities (both 2-bank and 4-bank
internal architectures), requiring 8-bit through 11-bit column address bits. Note that 14-bit
(2 internal bank) devices can be supported by connecting the BA1 pin to the most significant
address pin of the devices.

Note that illegal device symmetries have been omitted from Table 10-8. lllegal symmetries
are those where the column width exceeds the row width dimension.

Table 10-8 SDRAM Devices Supported with Column Boundary Specification

Device
Column Count Dimension | MA/BA Bank

Width Density | Banks | Organization | Device Architecture | per Bank | Row: Col Width (32-Bit)
8-bit 16 Mbit 2 4M x 4 2M x 4 x 2-banks 8 13:8 14-bit | 16 Mbytes
2M x 8 1M x 8 x 2-banks 4 12:8 13-bit 8 Mbytes
1M x 16 512K x 16 x 2-banks 2 11:8 12-bit 4 Mbytes
4 AM x 4 1M x 4 x 4-banks 8 12:8 14-bit | 16 Mbytes
2M x 8 512K x 8 x 4-banks 4 11:8 13-bit 8 Mbytes
64 Mbit 2 8M x 8 4M x 8 x 2-banks 4 14:8 15-bit | 32 Mbytes
4M x 16 2M x 16 x 2-banks 2 13:8 14-bit | 16 Mbytes
2M x 32 1M x 32 x 2-banks 1 12:8 13-bit 8 Mbytes
4 8M x 8 2M x 8 x 4-banks 4 13:8 15-bit | 32 Mbytes
4M x 16 1M x 16 x 4-banks 2 12:8 14-bit | 16 Mbytes
2M x 32 512K x 32 x 4-banks 1 11:8 13-bit 8 Mbytes
128 Mbit 2 8M x 16 4M x 16 x 2-banks 2 14:8 15-bit | 32 Mbytes
4M x 32 2M x 32 x 2-banks 1 13:8 14-bit | 16 Mbytes
4 8M x 16 2M x 16 x 4-banks 2 13:8 15-bit | 32 Mbytes
4M x 32 1M x 32 x 4-banks 1 12:8 14-bit | 16 Mbytes
256 Mbit 2 8M x 32 4M x 32 x 2-banks 1 14:8 15-bit | 32 Mbytes
8M x 32 2M x 32 x 4-banks 1 13:8 15-bit | 32 Mbytes

Elan™SC520 Microcontroller User’s Manual 10-13

AMDZ\

SDRAM Controller

Table 10-8 SDRAM Devices Supported with Column Boundary Specification (Continued)
Device
Column Count Dimension | MA/BA Bank
Width Density | Banks | Organization | Device Architecture | per Bank | Row: Col Width (32-Bit)
9-bit 16 Mbit 2 AM x 4 2M x 4 x 2-banks 8 12:9 13-bit | 16 Mbytes
2M x 8 1M x 8 x 2-banks 4 11:9 12-bit 8 Mbytes
AM x 4 1M x 4 x 4-banks 8 11:9 13-bit | 16 Mbytes
64 Mbit 2 16M x 4 8M x 4 x 2-banks 8 14:9 15-bit | 64 Mbytes
8M x 8 4M x 8 x 2-banks 4 13:9 14-bit | 32 Mbytes
4M x 16 2M x 16 x 2-banks 2 12:9 13-bit | 16 Mbytes
2M x 32 1M x 32 x 2-banks 1 11:9 12-bit 8 Mbytes
4 16M x 4 4M x 4 x 4-banks 8 13:9 15-bit | 64 Mbytes
8M x 8 2M x 8 x 4-banks 4 12:9 14-bit | 32 Mbytes
4M x 16 1M x 16 x 4-banks 2 11:9 13-bit | 16 Mbytes
128 Mbit 2 16M x 8 8M x 8 x 2-banks 4 14:9 15-bit | 64 Mbytes
8M x 16 4M x 16 x 2-banks 2 13:9 14-bit | 32 Mbytes
4M x 32 2M x 32 x 2-banks 1 12:9 13-bit | 16 Mbytes
4 16M x 8 4M x 8 x 4-banks 4 13:9 15-bit | 64 Mbytes
8M x 16 2M x 16 x 4-banks 2 12:9 14-bit | 32 Mbytes
4M x 32 1M x 32 x 4-banks 1 11:9 13-bit | 16 Mbytes
256 Mbit 2 16M x 16 8M x 16 x 2-banks 2 14:9 15-bit | 64 Mbytes
8M x 32 4M x 32 x 2-banks 1 13:9 14-bit | 32 Mbytes
4 16M x 16 4M x 16 x 4-banks 2 13:9 15-bit | 64 Mbytes
8M x 32 2M x 32 x 4-banks 1 12:9 14-bit | 32 Mbytes
10-bit | 16 Mbit AM x 4 2M x 4 x 2-banks 8 11:10 12-bit 16 Mbytes
64 Mbit 16M x 4 8M x 4 x 2-banks 8 13:10 14-bit | 64 Mbytes
8M x 8 4M x 8 x 2-banks 4 12:10 13-bit | 32 Mbytes
4M x 16 2M x 16 x 2-banks 2 11:10 12-bit | 16 Mbytes
4 16M x 4 4M x 4 x 4-banks 8 12:10 14-bit | 64 Mbytes
8M x 8 2M x 8 x 4-banks 4 11:10 13-bit | 32 Mbytes
128 Mbit 2 32M x 4 16M x 4 x 2-banks 8 14:10 15-bit | 128 Mbytes
16M x 8 8M x 8 x 2-banks 4 13:10 14-bit | 64 Mbytes
8M x 16 4M x 16 x 2-banks 2 12:10 13-bit | 32 Mbytes
4M x 32 2M x 32 x 2-banks 1 11:10 12-bit | 16 Mbytes
4 32M x 4 8M x 4 x 4-banks 8 13:10 15-bit | 128 Mbytes
16M x 8 4M x 8 x 4-banks 4 12:10 14-bit | 64 Mbytes
8M x 16 2M x 16 x 4-banks 2 11:10 13-bit | 32 Mbytes
256 Mbit 2 32M x 8 16M x 8 x 2-banks 4 14:10 15-bit | 128 Mbytes
16M x 16 8M x 16 x 2-banks 2 13:10 14-bit | 64 Mbytes
8M x 32 4M x 32 x 2-banks 1 12:10 13-bit | 32 Mbytes
4 32M x 8 8M x 8 x 4-banks 4 13:10 15-bit | 128 Mbytes
16M x 16 4M x 16 x 4-banks 2 12:10 14-bit | 64 Mbytes
8M x 32 2M x 32 x 4-banks 1 11:10 13-bit | 32 Mbytes
10-14 Elan™SC520 Microcontroller User's Manuall

SDRAM Controller

AMDA

Table 10-8 SDRAM Devices Supported with Column Boundary Specification (Continued)
Device
Column Count Dimension | MA/BA Bank
Width Density | Banks | Organization | Device Architecture | per Bank | Row: Col Width (32-Bit)
11-bit | 64 Mbit 2 16M x 4 8M x 4 x 2-banks 8 12:11 13-bit | 64 Mbytes
8M x 8 4M x 8 x 2-banks 4 11:11 12-bit 32 Mbytes
4 16M x 4 4M x 4 x 4-banks 8 11:11 13-bit | 64 Mbytes
128 Mbit 2 32M x 4 16M x 4 x 2-banks 8 13:11 14-bit | 128 Mbytes
16M x 8 8M x 8 x 2-banks 4 12:11 13-bit | 64 Mbytes
8M x 16 4M x 16 x 2-banks 2 11:11 12-bit | 32 Mbytes
4 32M x 4 8M x 4 x 4-banks 8 12:11 14-bit | 128 Mbytes
16M x 8 4M x 8 x 4-banks 4 11:11 13-bit | 64 Mbytes
256 Mbit 2 64M x 4 32M x 4 x 2-banks 8 14:11 15-bit | 256 Mbytes
32M x 8 16M x 8 x 2-banks 4 13:11 14-bit | 128 Mbytes
16M x 16 8M x 16 x 2-banks 2 12:11 13-bit | 64 Mbytes
8M x 32 4M x 32 x 2-banks 1 11:11 12-bit | 32 Mbytes
4 64M x 4 16M x 4 x 4-banks 8 13:11 15-bit | 256 Mbytes
32M x 8 8M x 8 x 4-banks 4 12:11 14-bit | 128 Mbytes
16M x 16 4M x 16 x 4-banks 2 11:11 13-bit | 64 Mbytes
Notes:
Not all device organizations specified in this table are available at the time of this printing.
The SDRAM Bank Configuration (DRCCFG) register (MMCR offset 14h) has one bit
(BNKx_BNK_CNT) to specify the internal number of banks and another bit field to specify
the column address width (BNKx_COLWDTH) of the device. Table 10-9 shows suggested
settings for these bit fields, given a device’s column address width and internal bank count.
Table 10-9 Column Address Configuration Settings for SDRAM

Internal Bank Count | Bank Column Address

Column Width Banks (BNKx_BNK_CNT) (BNKx_COLWDTH)
8-bit 2 Ob 00b

4 1b 00b
9-bit 2 Ob 01b

4 1b 01b
10-bit 2 Ob 10b

4 1b 10b
11-bit 2 Ob 11b

4 1b 11b

For example, if Bank 2 is composed of SDRAM devices organized as 2M x 8 x 4 banks (8
Mbyte x 8) with 4096 rows and 512 columns (9-bit), by using Table 10-9, the appropriate
bank configuration for this 4-bank device is 1b for the BNK2_BNK_CNT field and 01b for
the BNK2_COLWDTH field of the SDRAM Bank Configuration (DRCCFG) register.

Elan™SC520 Microcontroller User’s Manual 10-15

AMDZ\

SDRAM Controller

10.5.2.2

Page Size

The page size of an SDRAM device is based on the column address width of the device.
The ElanSC520 microcontroller address mapping takes advantage of the full page specified
by the devices column address width. Table 10-10 lists the page size available based on
the column address width specified. The page size in an SDRAM device applies for each
internal bank.

Table 10-10

10.5.3

SDRAM Page Sizes

Column Width Page Size for 32-Bit Banks

8-bit 1 Kbyte

9-bit 2 Kbytes

10-bit 4 Kbytes

11-bit 8 Khytes

Error Correction Code (ECC)

The ElanSC520 microcontroller supports Error Correction Code (ECC) to check the integrity
of transactions with the system SDRAM. ECC is implemented by a modified Hamming
code. It corrects a single-bit error and detects all two-bit (called multi-bit) errors. The memory
array must have check bits to implement ECC.

ECC operation requires that system memory be initialized. In this procedure, the boot code
writes to every memory location, automatically generating valid ECC that is stored in the

SDRAM check bits. If this procedure is not performed, errors will occur in the generation

of the check bits when writing data smaller than a 32-bit doubleword or when reading un-
initialized data.

The ECC circuit uses a modified Hamming code to generate a 7-bit check word from the
32-bit data word. This check word is stored along with the data word during the memory
write cycle. During the memory read cycle, the 39-bit words from memory are processed
by the ECC circuit to determine if errors have occurred in storing or retrieving data.

If there is a single-bit error in the 32-bit data word or check-bits, the ECC circuit flags an
error, latches the error-generating address along with the bit position where the error was
detected, and passes along the corrected data word to the requesting master. It does not
write the corrected data back out to the SDRAM. It generates a maskable interrupt signal
when a single-bit error is detected. This maskable interrupt signal is generated even if there
is a single-bit error in the 7-bit check word.

Multi-bit errors are flagged but not corrected. These errors may occur in any two bits of the
39-bit word from memory (two errors in the 32-bit data word, two errors in the 7-bit check
word, or one error in each word). A separate non-maskable interrupt is generated by the
ECC logic for multi-bit errors.

These two interrupts are routed to the interrupt steering logic in the programmable interrupt
controller. See Chapter 15, “Programmable Interrupt Controller”, for more details and
further options.

If there is any write that is less than the full four bytes, there is a loss of performance due
to ECC. The seven check-bits for any given ECC data field are generated over the entire
field. In other words, all four bytes of data are taken into account in generating the seven
check-bits associated with that data. If any changes were to occur to any of the data bytes,
the check-bits would no longer be correct.

10-16

Elan™SC520 Microcontroller User’s Manual

SDRAM Controller AMDZ\

10.5.4

To avoid this, whenever a single byte is to be written to the SDRAM (or for that matter, any
number of bytes that is less than the full doubleword), ECC first reads the whole data word,
checks for any single- or multi-bit errors, and, if any are present, generates the
corresponding interrupt and corrects the data (for a single-bit error), modifies the necessary
bytes, and then generates the check-bits across the modified four bytes. Finally, the entire
ECC word is stored back into memory. This process is called a read-modify-write operation.
If a full doubleword is written, then there is no need for a read-modify-write cycle. Also, a
partial doubleword write to a write-protected region does not generate a read-modify-write
cycle.

Since seven check-bits are required for each bank of SDRAM if ECC is enabled, ECC
cannot be supported if 168-pin (72-bit) SDRAM DIMMS are used. If a single 168-pin (72-
bit) DIMM is used for supporting two banks, then ECC cannot be enabled due to lack of
extra check bits in the DIMM. In this case, extra SDRAM devices must be used to store the
check-bits.

To assist in the development of software to handle ECC single-bit and multi-bit errors, the
ECC Check Code Test (ECCCKTEST) register (MMCR offset 23h) is provided. This register
can be used to override the automatically-generated ECC check code with a user-provided
check code for the following SDRAM write access.

Buffering

The ElanSC520 microcontroller includes two buffering techniques to optimize the memory
system performance. These include the write buffer and read buffer.

When enabled, the write buffer effectively decouples master write activity from incurring
the SDRAM latency penalty. This, in effect, also leaves SDRAM free to satisfy a higher
demand in read activity by all masters. In addition, the write buffer provides write merge
and write collapse functions to better utilize FIFO storage and reduce the number of
transactions to SDRAM. The read merge function is also provided to reduce data coherency
overhead by eliminating the need to flush the write buffer prior to a read access. During a
read request, should the write buffer contain more recent data than SDRAM, the data from
the write buffer is merged with data returned from SDRAM, eliminating the need to flush
the write buffer.

The ElanSC520 microcontroller supports a Read-Around-Write feature when the write
buffer is enabled. When the write buffer is enabled, the SDRAM controller’s arbiter favors
read activity, effectively giving read priority to SDRAM over write data that has been posted
in the write buffer. This feature is intended to increase master read performance.

The read buffer provides two cache lines (32 bytes total) of storage for read data returned
from SDRAM. Read requests that can be retrieved from the read buffer can be provided in
zero wait states to the requesting master. The SDRAM controller always fetches an entire
cache line of data from the SDRAM and stores it in the read buffer, independently of the

amount of data requested during the master access. For example, during a read request
from a non-bursting master (i.e., single doubleword request), the SDRAM controller fetches
the entire cache line of data from SDRAM and stores it in the read buffer.

The read buffer’s read-ahead function, when enabled, provides a mechanism to prefetch
the cache line of information from SDRAM that immediately follows the requested cache
line. This is in anticipation of future accesses to the prefetched line. The read-ahead feature
of the read buffer enhances read burst activity by the Am5,86 CPU and external PCI master
burst read requests. Read prefetches, when enabled, occur only for read burst transfer
requests of two or more doublewords. Single doubleword read requests do not cause a
read-ahead buffer prefetch of the next cache line; they only cause the cache line of the

Elan™SC520 Microcontroller User’s Manual 10-17

AMDZ\

SDRAM Controller

10.5.5

10.5.5.1

demanded access to be read into the read buffer. GP-DMA read accesses are alwayssingle
word accesses.

The read buffer is always enabled, however, the read-ahead feature and write buffer can
be independently enabled and are disabled after a system reset or programmable reset.
For more information on the SDRAM controller’'s buffering, see Chapter 11, “Write Buffer
and Read Buffer”.

SDRAM Control Configuration

The SDRAM controller provides the following control functions:
m Refresh rate

m Refresh enable

m SDRAM pin drive strength

m Write buffer test mode

m Operation mode select

Refresh Control

To refresh the SDRAM devices, the SDRAM controller issues the Auto Refresh command.
Since the ElanSC520 microcontroller is intended to support a variety of vendors, the refresh
rate at which this command is issued is a configurable parameter. Itis specified in the DRAM
Refresh Request Speed (RFSH_SPD) bit field in the SDRAM Control (DRCCTL) register
(MMCR offset 10h) and offers either 7.8-us, 15.6-us, 31.2-us or 62.5-us periods.

Note: Since the minimum refresh rate is 62.5us, which is below the maximum time between
an Active command and a Precharge command (Trps), the SDRAM controller does not

support a RAS time-out feature.

The refresh rate is calculated from this equation:
Refresh Rate = Interval / Row

where:

Interval is how often a particular row must be refreshed
Row is the number of rows within the device that must be refreshed

Table 10-11 shows the SDRAM refresh rates and their corresponding intervals. SDRAM
devices contain either two or four internal banks. During each refresh cycle, all internal
SDRAM banks are refreshed simultaneously. This implies that a 2-bank architecture
performs dual-row refresh and a 4-bank architecture performs a quad-row refresh, per
refresh cycle.

Table 10-11 SDRAM Refresh Rates

Number of Refresh Rate

Rows 7.8us | 156 pus | 31.2 us | 62.5 ps
256 2ms 4 ms 8 ms 16 ms
512 4 ms 8 ms 16 ms 32 ms
1024 8 ms 16 ms 32 ms 64 ms
2048 16 ms 32 ms 64 ms | 128 ms
4096 32 ms 64 ms | 128 ms

8192 64 ms | 128 ms

10-18

Elan™SC520 Microcontroller User’s Manual

SDRAM Controller AMDZ\

10.5.5.2

10.5.5.3

For example, if an SDRAM device is organized as 2M x 8 x 4 banks (8Mb x 8) with 4096
rows and 512 columns and requires a 64-ms refresh interval, by using Table 10-11, the
refresh rate is 15.6 ps.

During an SDRAM refresh period, all enabled banks are issued an Auto Refresh command.
However, during a refresh cycle, SDRAM devices require a somewhat large amount of
current, which could become quite large when considering a simultaneous refresh of
multiple banks within the same clock period. To prevent this, the SDRAM controller staggers
the bank refresh by selecting one bank at a time. This results in only one bank being issued
an Auto Refresh command during any given clock, rather than all banks within the same
clock. This method results in a slightly larger amount of overhead associated with refresh
cycles, but prevents large current surges to the SDRAM banks on the system circuit board.
Figure 10-12 on page 10-27 shows an SDRAM staggered refresh cycle.

SDRAM refresh cycles must be enabled only when the SDRAM Operation Mode Select
specifier is in normal SDRAM mode. The Refresh Enable (RFSH_ENB) bit is located in the
SDRAM Control (DRCCTL) register (MMCR offset 10h).

Drive-Strength Selection

The ElanSC520 microcontroller provides selectable drive strength options on all address,
data and control signals to provide support for different SDRAM device loads presented by
different system designs.

Pins with selectable drive strength options include:

m MA12-MAO (memory address)
m BA1-BAO (bank address)

s MD31-MDO (memory data)

m MECC6-MECCO (ECC data)
m SCS3-SCSO0

= SDQM3-SDQMO

m SCASA-SCASB

m SRASA-SRASB

m SWEA-SWEB

With the exception of SCS3-SCSO0, these pins are equipped to drive 12 mA, 18 mA or 24
mA of current. SCS3-SCSO0 drive either 18 mA or 12 mA.

The SDRAM interface drive strength can be changed in the Drive Strength Control (DSCTL)
register (MMCR offset C28h), which is described in the Programmable 1/O section of the
Elan™SC520 Microcontroller Register Set Manual, order #22005.

Write Buffer Test Mode

The ElanSC520 microcontroller supports a write buffer test mode, using the alternate
function of the CF_ROM_GPCS, DATASTRB, and CF_DRAM pins that provide master
contribution information. As WBMSTR2-WBMSTRO, these three pins indicate whether the
Am5,86 CPU, PCI bus master, GP-DMA, or a combination of these (because the write
buffer may collapse or merge write data) has contributed into the rank of the write buffer
currently in the process of being written to SDRAM. This option is specified with the
WB_TST_ENB bit in the SDRAM Control (DRCCTL) register (MMCR offset 10h). See
Chapter 24, “System Test and Debugging”, for more information on the uses of these pins.

Elan™SC520 Microcontroller User’s Manual 10-19

AMDZ\

SDRAM Controller

10.5.5.4 Operation Mode Select

The ElanSC520 microcontroller provides an SDRAM Operation Mode Select

(OPMODE_SEL) bit field in the SDRAM Control (DRCCTL) register (MMCR offset 10h).

These bits are used to select a particular mode of operation of the SDRAM controller.

m The default mode of operation is normal SDRAM mode. This is the mode in which the
SDRAM controller must be configured for data access.

m The NOP, All Banks Precharge, Load Mode Register, and Auto Refresh commands
specified by the OPMODE_SEL bit field are primarily used for SDRAM device
initialization.

When specifying NOP, All Banks Precharge, Load Mode Register, or Auto Refresh

commands, the command is not actually applied to the SDRAM devices until an Am5,86

CPU access to SDRAM occurs (either a read or write cycle).

The write buffer must be disabled prior to utilizing the NOP, All Banks Precharge, Load

Mode Register, or Auto Refresh OPMODE_SEL bit field if the Am5,86 CPU cycle executed

to generate these cycle types to the SDRAM devices is a write cycle.

The All Banks Precharge command should be issued prior to bank configuration changes.

This places the SDRAM devices in an idle state and clears the SDRAM controller's page

table entries.

See “SDRAM Device Initialization” on page 10-30 for more information.

10.5.6 SDRAM Timing Configuration

The ElanSC520 microcontroller provides independent timing configuration for SDRAM

devices. The following timing parameters are configurable:

m CAS latency (C))

m RAS precharge (Trp)

m RAS-t0-CAS delay (TRCD)

m RAS-t0-RAS or auto-refresh-to-RAS (Trc)

Note that the write recovery time (T\yr) parameter is fixed to 2T (where T refers to a 15-ns

clock period for a 33.333-MHz crystal).

10.5.6.1 CAS Latency (C,)

The CAS latency (C|) of an SDRAM device specifies the number of clocks between a read

command being issued until the first piece of read data is available. After this delay, read

data is returned on each subsequent clock.

The ElanSC520 microcontroller supports CAS latency options for either 2T or 3T (where

T refers to a 15-ns clock period for a 33.333-MHz crystal). This parameter is a configuration

option, since some SDRAM devices have slightly better access timing when configured for

C, = 3. The CAS_LAT bit in the SDRAM Timing Control (DRCTMCTL) register (MMCR

offset 12h) is used to specify this value.

The C, parameter is programmed into the device with the Load Mode Register command.

See “SDRAM Deuvice Initialization” on page 10-30 for more information.

10-20 Elan™SC520 Microcontroller User's Manual

SDRAM Controller AMDZ\

10.5.6.2

10.5.6.3

10.5.6.4

RAS Precharge (Trp)

The RAS Precharge (Trp) parameter of an SDRAM device refers to the minimum period
of time that must be met following a Precharge command until a subsequent command to
the same bank can be issued. After Trp is met, the SDRAM device is considered to be in
the idle state. Tgrp varies between device vendors and device speed grades. Even though
the ElanSC520 microcontroller provides a 66-MHz SDRAM device clock, faster devices are
supported (83-MHz, 100-MHz, 125-MHz, etc.).

Since the ElanSC520 microcontroller is intended to support a variety of vendors and speed
grades, Trp is a configurable parameter and offers either 2T, 3T, 4T or 6T timing (where T
refers to a 15-ns clock period for a 33.333-MHz crystal). It is specified in the

RAS PCHG_DLY bit field of the SDRAM Timing Control (DRCTMCTL) register (MMCR
offset 12h).

RAS-to-CAS Delay (Tgcp)

The RAS-to-CAS delay parameter of an SDRAM device refers to the minimum period of
time between the time an Active command is issued to the time a read or write command
may be issued. This is referred to the Tgcp parameter.

Since the ElanSC520 microcontroller is intended to support a variety of vendors and speed
grades, the Trcp parameter can be programmed for either 2T, 3T, or 4T timing (where T
refers to a 15-ns clock period for a 33.333-MHz crystal). Most current SDRAM devices
expect a minimum Trcp of 30 ns (or greater), which may be violated with a 2T setting under
heavy loading. This parameter is specified in the RAS_CAS_DLY bit field of the SDRAM
Timing Control (DRCTMCTL) register (MMCR offset 12h).

RAS-to-RAS or Auto-Refresh-to-RAS (Trc)

The RAS-to-RAS or auto-refresh-to-RAS parameter (Trc) of an SDRAM device refers to
the minimum period of time between an Active command and another Active command to
the same internal bank. It also pertains to the minimum amount of time between an Auto
Refresh command and an Active command.

The ElanSC520 microcontroller does not provide a configuration for the Trc parameter for
the timing between an Active command and a following Active command to the same
internal bank, since this is a function of the Tgcp and Tgrp parameters. Two accesses to
different rows of the same internal bank result in an Active command being issued for each
access, but the Active command associated with the second access is always preceded
by a Precharge Bank command. Because of the preceding Precharge Bank command for
the second access, a combination of the Tgcp and Trp parameters must provide adequate
timing such that the Ty parameter is not violated.

The minimum Tgc for an Active command to an Active command is calculated as:

Trec = Trep (configuration setting in number of clocks) + Trp (configuration setting in number
of clocks) + 2T (where T refers to a 15-ns clock period for a 33.333-MHz crystal).

When a Trep of 2T is specified, 1T is added to the Tr¢ equation to enforce a minimum
TRAS of 5T.

Trc also applies between an Auto Refresh command and an Active command. For this,
the ElanSC520 microcontroller enforces a fixed 9T timing (where T refers to a 15-ns clock
period for a 33.333-MHz crystal) following the /ast Auto Refresh command of a staggered
refresh sequence.

Elan™SC520 Microcontroller User’s Manual 10-21

AMDZ\

SDRAM Controller

10.5.6.5

10.5.7
10.5.7.1

Minimum RAS (Tgas)

The minimum RAS parameter of an SDRAM device refers to the minimum period of time
that a row must remain open. This is the period of time between an Active command and
a Precharge command to the same internal bank. This parameter is referred to as Tras.

Since the ElanSC520 microcontroller performs single write cycles, the minimum Trag
occurs during write cycles. Tgrag is a function of Trcp. This parameter is calculated as:

Tras = Trep (configuration setting in number of clocks) + 2T (where T refers to a 15-ns
clock period for a 33.333-MHz crystal).

A minimum Trpg Of 5T is enforced when a Trep of 2T is specified.

Bus Cycles
SDRAM Burst Read Cycle

The ElanSC520 microcontroller always bursts up to four doublewords on a read as shown
in Figure 10-7. The burstread to the SDRAM could occur due to any of the following reasons:

Am5,86 CPU read

m Read buffer's read-ahead prefetch

ElanSC520 microcontroller responding to PCI burst cycle as a target
GP-DMA

Figure 10-7

SDRAM Burst Read Cycle (Read-Ahead Feature Disabled) (Page Miss/Page Hit)

okepu [[L[L LT L LT L L LT L LI LT L
ads | |
x5_abus (0 a4 ¥ 8 ¥ c Ji(10
blast \
x5_data_in {a { b ¥ ¢ ¥ d} (e)
brdy \ o
pghit o
clk_mem
MA12-MAO,
BA1-BAO
Command
CAS latency = 2
MD31-MDO (@b} (dNd]
Notes:

This timing diagram does not account for resynchronization of SDRAM signals with CLKMEMIN.

10-22

Elan™SC520 Microcontroller User’s Manual

SDRAM Controller AMDZ\

10.5.7.2 SDRAM Write Cycle

With the write buffer enabled, all writes to the SDRAM come from the write buffer. With the
write buffer disabled, the SDRAM write cycle could occur due to any of the following reasons:

= Am5,86 CPU
m ElanSC520 microcontroller responding to PCI burst cycle as target
m GP-DMA

All the writes are configured for single write mode, with each write occurring independently.
Am5,86 CPU non-burst write transfers are shown in Figure 10-8. An Am5,86 CPU burst
write cycle is shown in Figure 10-9.

Figure 10-8 SDRAM Write Cycle (Write Buffer and ECC Disabled) (Page Miss/page Hit)

S N R A S R S A e e
ads / | A VY A W A
x5_abus (0 W 4 I 8 I |
blast \
x5_data_out (a) (b 4
brdy Y A U A Y A
pghit /
ckmem - [U UYL UYUOUUL
MA12-MAO,
BA1-BAO Col
Command Pref YAct) Jwr T} T Ywr) T X Jwr (O)
MD31-MDO (a) (b) (c]

Notes:
This timing diagram does not account for resynchronization of SDRAM signals with CLKMEMIN.

Elan™SC520 Microcontroller User’s Manual 10-23

AMDZ\

SDRAM Controller

Figure 10-9 SDRAM CPU Burst Write (Write Buffer and ECC Disabled) (Page Miss/Page Hit)

clk_cpu
ads
x5_abus

blast
x5_data_out

brdy

pghit
clk_mem

MA12-MAO,
BA1-BAO

Command

MD31-MDO

Notes:

o b I I L L L
A [A
0 P4 B 8 B c i 10 |
\
(a O b B ¢ i d)
\ [
/

{Bnk} (Row) { Col } (Col) {Col} (Col)

(Pref KActf Jwrf f Jowrk Kwrf fwef f K|

(a] (b) e i d)

This timing diagram does not account for resynchronization of SDRAM signals with CLKMEMIN.

10.5.7.3 ECC SDRAM Cycles

When ECC is enabled, additional overhead is necessary to compensate for ECC logic
delays and read-modify-write cycles due to partial doubleword write cycles. The least
amount of overhead occurs during a full doubleword write to the SDRAM. In the case of a
read, however, the ECC has to generate the new check bits, check for any errors, and
generate an interruptif an error occurs. A delay of one CPU clock cycle is added for SDRAM
read cycles with ECC enabled. With ECC enabled, read page hit burst timing of 4-1-1-1
(where C| = 2)is achieved, compared to a 3-1-1-1 (where C| = 2) burst with ECC disabled.
See Figure 10-10 showing the read cycles with ECC enabled.

10-24

Elan™SC520 Microcontroller User’s Manual

SDRAM Controller AMDZ\

Figure 10-10 SDRAM Burst Read Cycle with ECC Enabled

clk_cpu

ads
x5_abus
x5_data_in
brdy

pghit
clk_mem
MA12-MAO,
BA1-BAO

Command

MD31-MDO

MECC6-
MECCO

Notes:

7 I 7 I 7 LI I
T
(oy 4 ¥ 8 (C
(Ca b e Jd)
\ [
_]
R e e O B
(_col]
| (RaX N X X)
———>{CAS latency = 2
(a (O d D
(eCJ@oaco

This timing diagram does not account for resynchronization of SDRAM signals with CLKMEMIN.

The ECC overhead is even higher in the case of a read-modify-write cycle, as shown in
Figure 10-11. As shown, a write cycle with a partial doubleword requires an SDRAM read
cycle followed by a write cycle. Note that the SDRAM read burst is terminated early by the
write cycle. See “Error Correction Code (ECC)” on page 10-16 for details of a read-modify-
write cycle.

Elan™SC520 Microcontroller User’s Manual 10-25

AMDZ\

SDRAM Controller

clk_cpu

ads

wir
x5_abus
be3-be0
x5_data_out
brdy

pghit
clk_mem

MA12-MAO,
BA1-BAO

Command

MD31-MDO

MECC6-MECCO

Notes:

Figure 10-11 SDRAM Read-Modify-Write Cycle (for Data Write) with ECC Enabled (Page Hit)1

r—— -7 -7 - L |

1011)

00AB0O000O)

{ Col Col

| X Rd X X X X Wr X
————{CAS latency = 2 .
Ca} ‘

Cal

1. This timing diagram does not account for resynchronization of SDRAM signals with CLKMEMIN.
2. Contents modified with the active bytes in the write word (00AB0000).

10.5.7.4

SDRAM Auto Refresh Cycle

Auto refresh, as shown in Figure 10-12, is used during normal operation of the SDRAM
and is analogous to the CAS-before-RAS refresh in EDO DRAMSs. This command is
nonpersistent, so it must be issued each time a refresh is required. The internal banks will
be precharged and idle for a minimum of the Precharge time (Trp) before the Auto Refresh
command is applied. When the refresh cycle has completed, all the banks of the SDRAM
will be in the precharged (idle) state. Note that this figure shows a staggered refresh cycle,
as described in “Refresh Control” on page 10-18.

The purpose of the programmable reset in the memory controller is to maintain the state
of the SDRAM during a reset. This allows SDRAM refreshes to occur during reset. See
Chapter 6, “Reset Generation”, for more information.

10-26

Elan™SC520 Microcontroller User’s Manual

SDRAM Controller AMDZ\

Figure 10-12 SDRAM Auto Refresh Cycle

CLKMEMOUT — 1 [T L@ L[T °_7 °—7 L[|

SCSO0
SCS1
SCS2
SCS3 \—,7
MA12-MAO,
BAL BAG (AlBnk.
Command | K pPre. | Nop [AutoRef.) AutoRef. AutoRef.)AutoRef |
10.5.7.5 SDRAM Mode Register Access Cycles

The mode register contained in the SDRAM devices is used to define the specific mode of
operation of the SDRAM. This definition includes the selection of the burst length, burst
type, CAS latency, operating mode, and write burst mode. An SDRAM Load Mode
Command is shown in Figure 10-13. See “SDRAM Device Initialization” on page 10-30 for
information on programming the mode register.

Figure 10-13 SDRAM Mode Register Access

CLKMEMOUT | \
MA12-MAOQ
’ (_ Code |
uz o Sg (Code] Row
Command —(Auto Ref.)(X Load Mode X X Act)

10.5.8 Interrupts

The SDRAM controllerimplements Error Correction Code logic to detect and correct single-
bit errors and detect multi-bit errors.

Separate interrupts can be generated for both single-bit error and multi-bit error detection.
These two interrupts are routed from the SDRAM controller to the ElanSC520
microcontroller's programmable interrupt controller (PIC).

m These two interrupts can be individually enabled by using the MULT_INT_ENB and
SGL_INT_ENB bits in the ECC Control (ECCCTL) register (MMCR offset 20h).

m The interrupt signals remain asserted to the PIC until a write is performed to the
MBIT_ERR and SBIT_ERR status bits in the ECC Status (ECCSTA) register (MMCR
offset 21h). This write is typically performed by the interrupt handler associated with the
interrupt.

Note: The multi-bit error interrupt, when enabled, always generates a non-maskable
interrupt (NMI).

Elan™SC520 Microcontroller User’s Manual 10-27

AMDZ\

SDRAM Controller

10.5.9
10.5.9.1

10.5.9.2

10.5.9.3

10.5.10

Software Considerations

ECC Errors

The ECC logic in the SDRAM controller detects single-bit error and multi-bit errors in the
SDRAM data being accessed.

m When a single-bit error is detected, a maskable interrupt is generated. See Chapter 15,
“Programmable Interrupt Controller”, for information on steering this interrupt.

m When a multi-bit error is detected, a non-maskable interrupt (NMI) is generated.

The interrupt handler should read the ECC Status (ECCSTA) register (MMCR offset 21h)
logging the detection of a single-bit error (SBIT_ERR) or a multi-bit error (MBIT_ERR),
depending on which interrupt signal is generated. The physical address where the error
occurredis latched for both single-bit and multi-bit errors in the ECC Single-Bit Error Address
(ECCSBADD) register (MMCR offset 24h) and ECC Multi-Bit Error Address (ECCMBADD)
register (MMCR offset 28h), respectively. An encoded value of the data bit position where
the single-bit error occurred is also latched in the ECC_CHK_POS bit field of the ECC
Check Bit Position (ECCCKBPOS) register (MMCR offset 22h).

All latched information pertaining to an error is latched on the first occurrence and cleared
when the latch is re-enabled. Information for errors that occur after the first occurrence, but
before the latch is re-enabled, are lost.

Buffer Disabling During SDRAM Configuration

Prior to altering the SDRAM configuration, the write buffer and read-ahead feature of the
read buffer must be disabled. This is to prevent SDRAM configuration changes while a write
buffer or read-ahead prefetch to SDRAM is in progress. During bank configuration, it is
important to not enable an SDRAM bank with the Bank Ending Address specified as 0.

Write Protection

Regions of SDRAM can be write-protected through the use of a Programmable Attribute
Region (PAR) register. A write-protected region allows read cycle access, however, data is
not written to the devices during a write cycle access. When writing to a region that is write-
protected, an SDRAM write cycle still occurs; however, the SDQM3-SDQMO data mask
signals are active throughout the cycle to prevent the data from being written to the devices.
If ECC is enabled and a noncomplete doubleword access is write-protected, the SDRAM
controller does not generate a read-modify-write cycle.

Latency

The SDRAM controller’'s write buffer and read buffer are designed to enhance the memory
system’s bandwidth and performance. When enabled, the write buffer decouples master
write or burst write activity from incurring the SDRAM access latency penalty along with
the overhead associated with SDRAM refresh cycles. When enabled, the read-ahead
feature of the read buffer decouples master read activity from incurring the SDRAM latency
penalty on read buffer hits. For more information, see Chapter 11, “Write Buffer and Read
Buffer”.

SDRAM devices require periodic refresh cycles to maintain data integrity within the device.
This SDRAM activity must occur at fixed intervals as high priority requests. In the event
that a data access request and a refresh cycle request occur at the same time, the data
access request is stalled until the higher priority refresh cycle is complete. Devices that can
tolerate a slower refresh period result in a system with less refresh overhead, leaving
SDRAM free for data access requests. To support these devices, the ElanSC520
microcontroller provides an adjustable refresh rate of 7.8 pus, 15.6 us, 31.2 us or 62.5 pus.

10-28

Elan™SC520 Microcontroller User’s Manual

SDRAM Controller AMDZ\

10.6
10.6.1

When the write buffer is enabled, writes to SDRAM occur independently of any associated
master activity until the write buffer is empty. Since the SDRAM data bus may be shared
with the ROM/Flash controller, write-buffer writes may request concurrently with master
requests to ROM/Flash. Should these two independent activities concurrently request
access to the data bus, the ROM/Flash cycle takes precedence over the write-buffer write
in favor of satisfying the requesting master. However, a ROM/Flash cycle may be temporarily
delayed should a master request ROM/Flash access during a write-buffer write in progress.
Furthermore, a ROM/Flash access that occurs during a read-ahead prefetch results in the
ROM/Flash access being temporarily delayed until the read prefetch completes. See
Chapter 12, “"ROM/Flash Controller”, for information on ROM/Flash sharing the SDRAM
data bus.

ECC results in additional latencies due to required read-maodify-write cycles. The read-
modify-write cycles are necessary when incomplete doublewords are written to the SDRAM
devices (i.e., any writes less than four bytes). Read-modify-write is required to update the
ECC code to include the information reflected in the partial doubleword to be written.
However, a partial doubleword write to a write-protected region does not generate a read-
modify-write cycle.

Prior to a write, the following sequence occurs:

1. The complete doubleword and ECC code is read from SDRAM and checked for errors
(the respective interrupt is generated if an error is detected)

2. The new ECC code is generated to include the data just read and the new data to be
written.

3. The complete modified doubleword and modified ECC code is written back into the
SDRAM.

Should the write cycle be a complete doubleword, the ElanSC520 microcontroller does not
require a read of the SDRAM first. This reduces the overhead associated with 32-bit writes
to SDRAM. However, since aread is not performed prior to a doubleword write, the contents
in SDRAM are not checked prior to the data being written.

INITIALIZATION

Programmable Reset

The ElanSC520 microcontroller's SDRAM controller provides the capability to maintain the
contents of the SDRAM during a reset event. In effect, two types of reset are supported:

m System reset—A complete reset where the entire SDRAM controller is reset and
contents of the SDRAM devices are lost.

m Programmable reset—The SDRAM controller configuration is maintained and the
contents of the SDRAM devices are also maintained by maintaining refresh cycles
throughout the programmable reset duration.

Selection of the resettype is controlled by the PRG_RST_ENB bitin the Reset Configuration
(RESCFG) register (MMCR offset D72h). With this bit, the PRGRESET pin can be
programmed to reset the ElanSC520 microcontroller for a programmable reset. On power-
up, the PRGRESET pin is disabled and must be programmed to be operational.

See “System Reset with SDRAM Retention” on page 6-6 for detailed information on the
sources of these resets.

The purpose of the programmable reset in the memory controller is to maintain the state
ofthe SDRAM during an ElanSC520 microcontroller reset. This requires SDRAM refreshes

Elan™SC520 Microcontroller User’s Manual 10-29

AMDZ\

SDRAM Controller

10.6.2

10.6.2.1

to occur throughout the entire duration of the programmable reset. Upon the assertion of
the programmable reset, the SDRAM controller arbiter lets the current SDRAM access
complete before returning the controller state machines to their idle states. This prevents
data corruption in the SDRAM array should the programmable reset be asserted during an
access to SDRAM. All SDRAM controller configuration is maintained.

Note: The contents of the write buffer are discarded for both types of reset. Also, the enable
states of the write buffer and read buffer are not maintained after a programmable reset.
Therefore, if the write buffer and read buffer were enabled prior to the programmable reset,
software must re-enable them after the programmable reset.

SDRAM Device Initialization

Section 10.6.2— Section 10.6.4 provide details on enabling the core and SDRAM
configuration. However, prior to altering the SDRAM configuration, the write buffer and read-
ahead feature of the read buffer must be disabled. This is to prevent SDRAM configuration
changes while a write buffer or read-ahead prefetch to SDRAM is in progress.

Refresh should be disabled anytime the SDRAM controller is not operating in normal
SDRAM mode. SDRAM refresh cycles should only be enabled when the OPMODE_SEL
bit field is configured for normal SDRAM mode. After the SDRAM devices are initialized
(with refresh cycles remaining disabled), they can be reliably accessed.

If the Error Correction Code (ECC) logic for SDRAM is enabled, the ECC operation requires
that SDRAM and its associated ECC memory be initialized. This is accomplished by the
boot code that must write to every location in SDRAM. This process initializes the ECC
SDRAM to reflect the proper Hamming code for its associated data. If this procedure is not
performed, false errors will occur when reading or when writing data smaller than a 32-bit
doubleword. See “Error Correction Code (ECC)” on page 10-16 for a more detailed
discussion of ECC.

Operation Mode Select

SDRAM devices must be powered up and initialized in a predefined manner prior to access.
The SDRAM controller's SDRAM Control (DRCCTL) register (MMCR offset 10h) provides
support for this procedure via the OPMODE_SEL field.

m By default, the OPMODE_SEL bit field reflects a normal SDRAM mode of operation.
However, a normal SDRAM mode of operation refers to the mode the SDRAM controller
must be configured in after SDRAM device initialization is complete. Normal SDRAM
mode allows read and write accesses to occur as requested by a master. SDRAM refresh
cycles should be enabled only when the OPMODE_SEL field is configured for normal
SDRAM mode.

m The other settings for the OPMODE_SEL field force all SDRAM accesses to a specific
SDRAM command type: NOP, Precharge, Load Command, or Refresh. Setting the
OPMODE_SEL bits to non-normal SDRAM mode results in all banks being selected
(i.e., SCS3-SCSO are driven active), so that the command is applied to all SDRAM
devices in the system.

To generate the command specified in the OPMODE_SEL field, an Am5,86 CPU read or
write cycle must be generated to the SDRAM region. The specified command occurs at
the SDRAM interface rather than the actual read or write cycle requested by the Am5,86
CPU.

10-30

Elan™SC520 Microcontroller User’s Manual

SDRAM Controller AMDZ\

10.6.2.2 NOP Command

Once power is applied and the clock is stable, most SDRAM devices require a 100-us delay
prior to applying an executable command. Therefore, boot code must guarantee that
SDRAM is not accessed immediately after reset. During this period and continuing at least
through the end of this period, the NOP command should be applied. During initialization,
the NOP command is enabled, with a binary pattern of 001b being written to the Operation
Mode Select bits. An Am5,86 CPU read or write cycle must be generated to the SDRAM
region to cause the generation of the specified command.

10.6.2.3 Precharge Command

Once the 100-us delay has been satisfied with at least one NOP command having been
applied, a Precharge command should be applied to all the internal banks within a device,
thereby placing the device in the idle state. The All Banks Precharge command can be
enabled during initialization, with a binary pattern of 010b being written to the Operation
Mode Select bits. In this mode, MA10 (precharge) is held high during the precharge to
enable the All Banks Precharge. Since all banks are selected, all banks will be enabled to
interpret this command.

10.6.2.4 Auto Refresh Command

Once in the idle state, two Auto Refresh cycles must be performed. The Auto Refresh
command can be enabled during initialization, with a binary pattern of 100b being written
to the Operation Mode Select bits. The boot code must perform at least two accesses to
SDRAM when in this mode.

10.6.2.5 Mode Register Programming

Once the Auto Refresh cycles are complete, the SDRAM is ready for mode register
programming. The Load Mode Register command can be enabled during initialization with
a binary pattern of 011b being written to the OPMODE_SEL field. Since all SDRAM banks
are selected (i.e., SCS3-SCSO0 are driven active), all banks will be configured to the same
mode. The mode register is programmed to define the SDRAM devices burst length, burst
type, CAS latency, operating mode, and write burst mode.

Of these five parameters, only the CAS latency parameter is configured by the user via the
CAS_LAT bitin the SDRAM Timing Control (DRCTMCTL) register (MMCR offset 12h). The
programmable options for CAS latency are 2T or 3T, where T = 15-ns clock period for a
33.333-MHz crystal. The other parameters are fixed by the ElanSC520 microcontroller.

Table 10-12 shows the parameters and their associated settings. All bits reflecting these
configurations are driven on the MA12—MAO signals during a Load Mode Register
command. Since SDRAM devices require only 12 bits for the command width, MA12 is
driven Low during this cycle.

Table 10-12 Load Mode Register Settings

Parameter Setting Description

Burst length Four phases Always read burst four

Burst type Interleaved Follow non-linear burst

CAS latency Programmable Select either 2T or 3T (see text)

Operating mode Standard operation | Defined

Write burst mode | Single location Single mode

Elan™SC520 Microcontroller User’s Manual 10-31

AMDZ\

SDRAM Controller

10.6.3

10.6.4

Boot Process

In a closed embedded system, the designer may be able to simply choose the correct values
to output to the configuration registers. Systems where the SDRAM parameters are not
known at boot time present more issues. Many SDRAM considerations, such as signal
loading, cannot be accurately determined by software. One way to deal with this issue is
to have a staged boot process, as follows:

1. First, all timing registers are programmed to assume a worst-case system by default
after reset.

2. Next, the SDRAM banks are tested for SDRAM existence, organization, and size. Banks
that contain SDRAM are enabled with the correct parameters.

3. Asystem memory testis then performed to ensure that there are no problems. The user
can be notified, and bad banks can be disabled, if any problems are encountered.

Since the user has control over SDRAM setup parameters, they must not be applied to the
SDRAM array until late in the boot process, so that the setup program can always be used
to recover the system if it becomes unbootable.

SDRAM Sizing Algorithm

The SDRAM sizing algorithm must alter the SDRAM configuration registers and write and
read specific boundary SDRAM locations to determine where the SDRAM bank boundary
exists. Data that is written and then returned on a read implies that valid SDRAM exists at
that location.

However, prior to accessing the SDRAM devices, the mode register for the device must be
programmed to configure the devices before they are functional. SDRAM device
initialization is discussed in more detail in Section 10.6.2. Note that SDRAM refresh cycles
should only be enabled when the OPMODE_SEL bit field is configured for normal SDRAM
mode. After the SDRAM devices are initialized (with refresh cycles remaining disabled),
they can be reliably accessed.

The SDRAM controller provides many configuration registers with control and timing
configuration functions. However, only a subset of these registers is required to be accessed
during the sizing procedure. In particular, the bits associated with specifying the column
address width, the internal bank count specifier, and the bank ending address are the most
critical for the sizing process.

m The column address width is used to specify the column width of the device.

m The internal bank count bit specifies if the device supports either two or four internal
banks.

m The SDRAM Bank 0-3 Ending Address (DRCBENDADR) register (MMCR offset 18h)
is used to specify the physical address bank boundary.

The column boundary method is used to accept a wide variety of SDRAM devices and
symmetries. In configuring the symmetry of the device, this method requires only the column
address width to be specified. Device addressing and symmetries are discussed in “SDRAM
Addressing” on page 10-12.

It is important to point out that whenever the column address width, internal bank count, or
bank ending address configuration is going to be changed, the All Banks Precharge
command must be issued prior to the configuration update. The All Banks Precharge
command can be enabled with a binary pattern of 010b being written to the OPMODE_SEL
bit field. A cycle to SDRAM must be run for the command to take effect. The All Banks

10-32

Elan™SC520 Microcontroller User’s Manual

SDRAM Controller AMDZ\

10.6.4.1

Precharge command closes all open pages in the SDRAM devices, thus placing them in
an idle state. This also forces the SDRAM controller’s page table entries to be invalidated.

The column address requirement of the device specifies its symmetry (i.e., its usable
number of columns, or page width, that the SDRAM controller can utilize), but does not
specify the amount of addressable SDRAM in the 32-bit bank. The bank ending address
is used to specify the physical address boundary of each bank. The bank ending address
is independent of device density or device data width. During SDRAM sizing, a bank should
never be enabled with a bank ending address of 0. The internal bank count specifier is used
to inform the SDRAM controller of the internal bank architecture of the device, since SDRAM
devices can contain either two or four internal banks.

m To dynamically determine the amount of SDRAM memory in the entire system, the sizing
algorithm must first determine the amount of SDRAM installed per each external bank.

— To do this, the algorithm must enable one external bank at a time and start with the
largest possible configuration for that bank, which is 11 columns, 4 internal banks,
and 13 rows.

— Ifasmaller-sized SDRAM is installed in a given external bank, aliases will be created,
and the sizing algorithm uses the aliasing to determine the actual size of the external
SDRAM bank.

m Note that while SDRAM sizing is being performed, the Am5,86 CPU cache, the SDRAM
ECC, the SDRAM write buffer, and the SDRAM read-ahead feature should all be
disabled.

For example, to setup external SDRAM Bank 3 to its largest possible SDRAM configuration
setting, a value of AOOOh should be written into the SDRAM Bank Configuration (DRCCFG)
register (MMCR offset 14h), and a value of FFO00000h should be written into the SDRAM
Bank 0-3 Ending Address (DRCBENDADR) register (MMCR offset 18h).

Determining the Number of Columns for an External Bank

Determining the correct number of columns for a given external bank of SDRAM can be
accomplished by four writes and five reads of a given external bank.

Four unique data patterns must be selected.
An example is:

patternl = 0Bh
pattern2 = OAh
pattern3 = 09h
pattern4 = 08h

Four SDRAM memory addresses must be selected that all have the same internal bank
and SDRAM row address bits (processor address bits 31-13 constant) and the same low
order column address bits (processor address bits 9-0 constant), but with specially selected
column addresses for processor address bits 12—-10.

m The first address must have SDRAM column address bits 11, 9, and 8 (processor
address bits 12—-10) on.

m The second address must have SDRAM column address bit 11 (processor address bit
12) off and SDRAM column address bits 9-8 (processor address bits 11-10) on.

m The third address must have SDRAM column address bits 11 and 9 (processor address
bits 12-11) off and SDRAM column address bit 8 (processor address bit 10) on.

Elan™SC520 Microcontroller User’s Manual 10-33

AMDZ\

SDRAM Controller

10.6.4.2

m The final address must have SDRAM column address bits 11, 9, and 8 (processor
address bits 12—-10) off.

There are many addresses which meet this criteria, of which one example is:

address1 = OEOO1EOOh
address2 = OEOOOEOOhN
address3 = 0E000600h
address4 = OE000200h

Here is the sequence to determine the number of columns for a given external bank of
SDRAM:

1. First, patternl is written and read back from address1.
Pattern2 is written and read back from address2.
Pattern3 is written and read back from address3.

Pattern4 is written and read back from address4.

a > w DN

If any of the four reads fail to produce the same pattern that was written, then either
SDRAM does not exist for this external bank, or the SDRAM is nonfunctional, which, in
either case, no memory is enabled and sizing continues with the next external bank.

6. If all four reads are correct, then addressl is read once again, and the pattern that is
returned by this read determines the true number of columns.

Using the patterns given in the example, the value read is the number of real columns for
the external bank.

Determining the Number of Internal Banks

Determining the correct number of internal banks and the true ending address of an external
bank requires only five writes and seven reads of the external bank.

Five unique data patterns must be selected.
An example is:

pattern5 = 3Fh
pattern6 = 1Fh
pattern7 = OFh
pattern8 = 07h
pattern9 = AAh

Five SDRAM memory addresses must be selected which all have the same low-order
SDRAM row address bits, the same least significant internal bank select bit (BAO), and the
same SDRAM column address bits (processor address bits 31-28 and 23-0 constant), but
with specially selected row addresses for processor address bits 27—-24. Processor address
bits 27—-24 is where the SDRAM rows above ROW10 are mapped in this maximum SDRAM
configuration.

m The first address must have processor address bits 27—-24 all on.

m The second address must have processor address bit 27 off and processor address bits
26-24 on.

m The third address must have processor address bits 27-26 off and processor address
bits 25-24 on.

m The fourth address must have processor address bits 27-25 off and processor address
bit 24 on.

10-34

Elan™SC520 Microcontroller User’s Manual

SDRAM Controller AMDZ\

10.6.4.3

m The final address must have processor address bits 27-24 all off.

There are many addresses which meet this criteria, of which one example is:

address5 = 0FO00000h
address6 = 07000000h
address7 = 03000000h
address8 = 01000000h
address9 = 00000000h

Here is the sequence to determine the correct number of internal banks:

First, pattern5 is written and read back from address5.
Pattern6 is written and read back from addressé6.
Pattern7 is written and read back from address?.
Pattern8 is written and read back from address8.

Pattern9 is written and read back from address9.

o g s~ w N E

If any of these five reads fail to produce the same pattern that was written, then either
SDRAM does not exist for this external bank, or the SDRAM is nonfunctional, which in
either case no memory is enabled and sizing continues with the next external bank.

7. If all five reads are correct, then the correct number of internal banks can be determined
by reading address7 once again.

8. If the pattern read from address7 is pattern9, then only two internal banks exist for this
external bank.

9. If the pattern read from address7 is pattern7 or pattern8, then four internal banks exist.

10.If the pattern read from address7 is anything other than pattern7, pattern8, or pattern9,
then there is no valid memory for this external bank.

The reason pattern? is read back from a 2-internal-bank SDRAM is because the SDRAM
controller thinks it has two open pages, and the SDRAM has only one open page, so the
data is retrieved erroneously from the wrong page.

Determining the True External Bank Ending Address

The true ending address can now be determined by reading adress5 again. If any value
other than pattern5, pattern6, pattern?, or pattern8 is read, then there is no valid memory
for this external bank.

Here is the sequence to determine the true external bank ending address:

1. Using the values for these patterns as in the example, the value read represents the
ending address for the external bank, if the device has 11 columns.

2. So, this value must be shifted right by the value 11, minus the actual number of columns
determined to exist.

3. This value must then be incremented by 1 and ORed with 80h to be ready to be loaded
into the appropriate byte of the SDRAM Bank 0-3 Ending Address (DRCBENDADR)
register (MMCR offset 18h).

This process is continued until all four possible external banks have been checked.

Elan™SC520 Microcontroller User’s Manual 10-35

AMDA SDRAM Controller

10-36 Elan™SC520 Microcontroller User’s Manual

AMD X\

1 1 WRITE BUFFER AND READ BUFFER

11.1

OVERVIEW

The ElanSC520 microcontroller includes two buffering techniques to optimize the SDRAM
system performance. These include a write buffer and a read buffer with a read-ahead
feature.

The write buffer provides a mechanism for all masters (Am5,86 CPU, PCI, or GP-DMA) to
post write data with zero wait states. When enabled, the write buffer effectively decouples
master write activity from incurring the SDRAM latency penalty. This, in effect, also allows
SDRAM to satisfy a higher demand in read activity by all masters. In addition, the write
buffer provides write-merging and write-collapsing functions to better utilize FIFO storage
and reduce the total number of transactions to SDRAM. Data read-merging is also
supported to efficiently maintain data coherency.

The read buffer provides two cache lines (32 bytes total) of storage for read data returned
from SDRAM. The read buffer and its associated read-ahead function, when enabled,
provide a mechanism to prefetch the cache line of information from SDRAM that
immediately follows the requested cache line. This feature is provided in anticipation of
future accesses to the prefetched line (spatial locality). The read buffer is always enabled;
however, the read-ahead feature and write buffer are disabled after a system reset.

Although both the write buffer and read-ahead feature of the read buffer are tightly
integrated, they can be independently enabled.

Features of the write buffer include:

m 32-level doubleword FIFO with random access capability

m Content addressable memory (CAM) provides snoop capability

m Zero wait state writes to non-full buffer

m Provides write-merging, write-collapsing, and read-merging functions
m Benefits Am5,86 CPU, PCI, and GP-DMA SDRAM write transfers

Features of the read buffer include:

Read buffer provides storage for two Am5,86 CPU cache lines (32 bytes total)
m Zero wait state reads on read buffer hits

m Read-ahead feature that, when enabled, prefetches the next cache line of information
from SDRAM for master read requests of two or more doublewords

m Demand doubleword start fetch
m Benefits Am5,86 CPU, PCI, and GP-DMA SDRAM read transfers
The write buffer is expected to enhance individual write or burst write activity by all masters.

It supplies zero wait state writes for all masters. However, the write buffer’'s write-merging
and write-collapsing features greatly enhance Am5,86 CPU, PCI, and GP-DMA 8-bit and

Elan™SC520 Microcontroller User’s Manual 11-1

AMDZ\

Write Buffer and Read Buffer

11.2

16-bit contiguous transfers, allowing multiple individual transfers to be merged into a single
transaction to SDRAM.

The read-ahead feature of the read buffer enhances read burst activity by the Am5,86 CPU
and external PCI master burst read requests. SDRAM cache line fills by the Am5,86 CPU
are probably the most common read requests. These reads typically occur as cache-line
bursts of four doubleword (32-bit) requests. PCI master burst read requests also benefit
greatly.

Each feature can be independently configured. To maintain data coherency, the read buffer
is invalidated during master write cycles or write buffer write cycles that hit an existing line
in the read buffer. Data coherency during all configuration changes of the individual features
is performed in hardware. A manual flush feature of the write buffer is provided.

BLOCK DIAGRAM

The write buffer and read buffer are integrated into the SDRAM controller’s subsystem as
shown in Figure 11-1. Each is capable of functioning independently. A more detailed view
of the internal write buffer and read buffer architecture is shown in Figure 11-2.

Figure 11-1

Write Buffer and Read Buffer Block Diagram (SDRAM Subsystem)

Elan™SC520 Microcontroller
MA12-MAO >
BA1-BAO -
i - L
Write Buffer/Read Buffer SCS3.5050 >
L
SCASB-SCASA >
s Read Buffer
o 5 SRASB-SRASA -
8 >
5] ! SDQM3-SDQMO
£ § SDRAM C Il _— >
> o ontrofler SWEB-SWEA -
o %) >
© 4 Write Buffer CLKMEMOUT
o
2 CLKMEMIN
MECC6-MECCO o
< >
MD31-MDO
—_ 4’

11-2

Elan™SC520 Microcontroller User’s Manual

Write Buffer and Read Buffer AMDl‘yl

Figure 11-2 Write Buffer and Read Buffer Block Diagram

Elan™SC520 Microcontroller
Write Buffer/Read Buffer Read Buffer
Address Latch rd_ad
Address Tag 0 [27-2] >
Address Tag 1
Read Buffer Data Latch
doubleword 7
doubleword 6 dram—
& rab_data[31-0] doubleword 5 data[31-0]
data[31-0] doubleword 4
Read-Merge 4——— doubleword 3
doubleword 2
l doubleword 1
doubleword 0
Read Buffer | < ‘ T
x5_control : Controller dram_control R
Write Buffer SDRAM
Controller
Controller
31 l T 10
x5_ad[27-2]) wb_ad[27-2]
> Address Tag P
x5_be[3-0] wb_be_1[3-0]
> Byte Valid Bits >
- WBMSTR2-WBMSTRO
Master Trace Bits >
Address/Debug Tag Storage (32 ranks)
Byte 3
x5_wr_data[31-0] Byte 2 wb_data[31-0]
> >
Byte 1
Byte O
Data Store (32 ranks)
11.3 SYSTEM DESIGN

Table 11-1 shows the multiplexing of signals that are used for SDRAM trace support and
test. See Chapter 24, “System Test and Debugging”, for more information on the uses of
these pins.

The CFG2-CFGO pinstrap functions associated with these three pins are sampled only as
aresult of PWRGOOD assertion and do not affect the other functions of these pins, so they

Elan™SC520 Microcontroller User’s Manual 11-3

AMDZ\

Write Buffer and Read Buffer

are not shown in this table. When enabled, the multiplexed signals shown in Table 11-1
either disable or alter any other function that uses the same pin.

Table 11-1

11.4

SDRAM Signals Shared with Other Interfaces

Default Signal Alternate Function | Control Bit Register

CF_ROM_GPCS | WBMSTRO WB_TST_ENB | SDRAM Control (DRCCTL) register
DATASTRB WBMSTR1 (MMCR offset 10h)
CF_DRAM WBMSTR2

REGISTERS
The memory-mapped registers for SDRAM buffer control are shown in Table 11-2.

Table 11-2

SDRAM Buffer Control Registers—Memory-Mapped

Register

MMCR
Offset
Mnemonic Address Function

SDRAM Control DRCCTL 10h SDRAM write buffer test mode enable

SDRAM Buffer Control DBCTL 40h Write buffer enable, read-ahead enable, write

buffer watermark, write buffer flush

11.5

OPERATION

The write buffer and read buffer are two features implemented in the SDRAM controller to
increase SDRAM performance.

The write buffer provides a mechanism for all masters (Am5,86 CPU, PCI, or GP-DMA) to
post write data with zero wait states, thus decoupling the master from experiencing the
write latency penalty associated with the SDRAM. When the write buffer is enabled, all
write activity to SDRAM is initiated by the write buffer.

Theread-ahead feature of the read bufferis designed to increase SDRAM read performance
by prefetching the cache line following the current access, thus possibly supplying data to
the requester with zero wait states. The read-ahead feature takes advantage of the fetch-
forward nature of the Am5,86 CPU prefetch engine (which relies on spatial locality of
program flow) and PCl read bursts. Read prefetching (when enabled) occurs only for master
read accesses that result in a burst of two or more doublewords. A prefetch never occurs
for a GP-DMA request since GP-DMA read requests are never burst. However, during a
GP-DMA read request, the remainder of the cache line is always fetched.

The write buffer provides a debug feature that, when enabled, provides contributing master
information on external pins (WBMSTR2-WBMSTRO) during a write buffer write cycle to
SDRAM. These pins reflect which master contributed to the write buffer level in the process
of being written back. The contributing masters reflected could be either: Am5,86 CPU,
PCI, or GP-DMA. Since the write buffer supports the write-merging and write-collapsing
functions, it is possible that multiple masters contributed to the same level that is in the
process of being written to SDRAM. See Chapter 24, “System Test and Debugging”, for
more information on write buffer debug support.

11-4

Elan™SC520 Microcontroller User’s Manual

Write Buffer and Read Buffer AMD:'

11.5.1

11.5.1.1

11.5.1.2

Write Buffer

The ElanSC520 microcontroller's SDRAM controller contains 32 4-byte write data buffers.
The write buffer provides benefits beyond that of a standard posting FIFO. A standard FIFO
blindly posts data without knowledge of data that already exists within the FIFO. The write
buffer is more efficient in that each write access is snooped.

The snoop function is used to determine if data associated with the current address already
exists in the FIFO. This feature allows write data to be merged or collapsed with data that
already exists in the write buffer. This results in areduced number of overall writes to SDRAM
for contiguous partial doubleword writes and also more efficiently utilizes the FIFO storage.
The snoop capability also provides the read-merging function to more efficiently handle
data coherency overhead. It does this by not requiring a total write buffer flush before
servicing a read cycle (which would ordinarily be required by a standard FIFO that does
not provide snooping).

The write buffer provides the following benefits:

m Zero wait state write data posting (to a non-full buffer), effectively decoupling master
write activity from SDRAM latency

m Read-around-write support, enhanced by the read-merging function, effectively allowing
the SDRAM controller to give read priority over buffered writes to SDRAM

m Write-merging and write-collapsing of write data

The read-around-write feature is provided when the write buffer is enabled. It allows read
requests to SDRAM to occur in front of, or around, write buffer requests. Write buffer

requests are due to write data that was posted during previous master write activity and is
migrating to SDRAM. Read-around-write is only functional when the write buffer is enabled.

Write Buffer Disabled

When the write buffer is disabled, all write and read traffic generated by any master is
directed around the write buffer directly to SDRAM. Write data is no longer posted, and
read cycles no longer require snooping for data coherency. If the write buffer contained
valid data when it was disabled, it is automatically flushed (by hardware) to SDRAM as a
top priority before SDRAM is free to service any subsequent requests. This guarantees
data coherency. Should any master try a read or write access to SDRAM at this time, the
cycle is stalled (via wait states) until the write buffer flush is complete.

The write buffer can be manually flushed by setting the WB_FLUSH bitin the SDRAM Buffer
Control (DBCTL) register (MMCR offset 40h). Write buffer flush complete status is available
after a manual flush by reading the WB_FLUSH bit.

Write Buffer Enabled

When the write buffer is enabled, all write data by all masters are written into the write
buffer. Data are written into SDRAM from the write buffer in FIFO fashion when the SDRAM
controller is free to service the request.

The snoop capability is used to enhance performance for both read and write cycles.

m Through the use of the snoop feature on write cycles, the write buffer can determine if
data already exists, and, if so, it either write-merges or write-collapses the data. This
enhances write performance through a reduction in the total number of required write
cycles to SDRAM for contiguous writes and also makes better utilization of the physical
storage space of the buffer.

Elan™SC520 Microcontroller User’s Manual 11-5

AMDZ\

Write Buffer and Read Buffer

11.5.1.2.1

m Forread cycles, the snoop feature is used to determine if data associated with the same
address of the read request already exists in the write buffer. If data is already present,
that data is read-merged with data being returned from SDRAM. This enhances SDRAM
system performance by not requiring the write buffer to be flushed prior to satisfying a
read cycle.

Write-merging, write-collapsing, and read-merging functions are described in
Section 11.5.1.2.1 and Section 11.5.1.2.2.

Although the write buffer and read buffer service all master SDRAM memory requests,
SDRAM reads that fill the Am5,86 CPU cache are more common than SDRAM writes. To
satisfy this demand and give priority read access to SDRAM, the write buffer works with
the SDRAM controller to alleviate write overhead. This is accomplished by posting write
data in zero wait states, effectively freeing the processor earlier to continue. Should a
following read cycle occur, the read-around-write feature of the SDRAM controller gives
priority to the read cycle to prevent the master from stalling. Without the snooping capability,
the entire contents of the write buffer would have to be flushed prior to any read cycle in
the event that more current data remains posted. Because of the snooping capability,
needless flushes are not performed. This results in less overhead to maintain data
coherency.

Should a read occur to an address contained in the write buffer, the write buffer merges its
data with the data returned from SDRAM. The read-merging function maintains data
coherency and eliminates the need to flush the write buffer.

Write-Merging and Write-Collapsing
When enabled, the write buffer supports write-merging and write-collapsing.

m Write-merging, as illustrated in Figure 11-3 on page 11-7, occurs when a sequence of
individual writes are merged into a single doubleword that hits in the write buffer level,
or doubleword. However, write-merging implies that the same byte location is not written
more than once.

m Write-collapsing, as illustrated in Figure 11-4 on page 11-8, is very similar to the write-
merging function, with the exception that the same byte location can be written more
than once. The write-collapsing function allows a sequence of individual writes to hit a
single level in the write buffer, even though previous data in that doubleword can be over-
written.

These functions optimize SDRAM performance by minimizing individual writes to SDRAM.
There are no dependencies between any doubleword in the write buffer and any of the
masters that are capable of posting data to the write buffer. This implies that multiple masters
may contribute to the merging or collapsing of any doubleword in the write buffer.

The terms write-merging and write-collapsing are intended to conform to the meaning as
introduced in the PCI Local Bus Specification, Revision 2.2.

11-6

Elan™SC520 Microcontroller User’s Manual

Write Buffer and Read Buffer

AMDA

Figure 11-3 Write Buffer Merging Example

1. DMA Write, Byte, Adrs OFBB000, Data 88h

D[31:24] 2
D[23:16] ?
D[15:8] v
D[7:0] 88
1 . s OFBBOOO-E 58 31 30 1 0
2. DMA Write, Byte, Adrs OFBB001, Data 92h
D[31:24] 2 2
D[23:16] ,
D[15:8] 2 2 92
1 - . i D[?O] 88
2. DMA-Write Byte-Adrs-0FBB0O01 Data92h 31 30 1 0
3. DMA Write, Byte, Adrs OFBB002, Data 44h
D[31:24] 2 v
D[23:16] % a4
D[15:8] 2 2 92
+ ; ; ; .
2 it , : D[7:0] Z 88
3: DBMAWrite Byte Adrs-0FBBOO2 Data-44h 31 30 1 0
4. DMA Write, Byte, Adrs OFBB003, Data 66h ¥
D[31:24] 2 2 66
D[23:16] 44
D[15:8] 2 2 92
D[7:0] 88
31 30 1 0
Notes:

This example illustrates how four separate write cycles can be “merged” and reduced to only one

doubleword SDRAM write transaction.

Elan™SC520 Microcontroller User’s Manual

11-7

AMDﬂ Write Buffer and Read Buffer

Figure 11-4 Write Buffer Collapsing Example

1. CPU Write, Low Word, Adrs 0A00X, Data 55AAh

D[31:24] 2 2
D[23:16] v
D[15:8] 55
D[7:0] % AA
1. CPU-Write Low WordAdrs OAQOX-Data 55AAR 31 30 3 2 1 0
2. CPU Write, Doubleword, Adrs 0X, Data 12345678h ¢
D[31:24] 2 2 12
D[23:16] 34
D[15:8] 2 2 56 | 55
1. CRUWrite Low Word Adrs 0A00X. Data 55AAh D{7:0] 78 |AA

2= EPUWrite-Doublewerd;-Adrs0X;-Bata12345678h 31 30 3 2 1 O
3. CPUWrite, Low Word, Adrs 0A00X, Data CDEFh

D[31:24] 2 2 12

D[23:16] g 34| |
D[15:8] 2 56 |CD
D[7:0] 78 |EF

31 30 3 2 1 0

Notes:

This example illustrates how existing data can be overwritten. Separate write cycles can be
“collapsed” and reduced to only one doubleword SDRAM write transaction.

11.5.1.2.2 Read-Merging
The write buffer supports read-merging.

m Read-merging, as illustrated in Figure 11-5 on page 11-9, occurs when a read cycle hits
a “dirty” doubleword that currently exists in the write buffer, and the read data returned
from SDRAM is replaced, or merged, with existing bytes from the write buffer.

Read-merging does not negate the need for a SDRAM read cycle. Even during aread cycle
that hits a complete dirty doubleword in the write buffer, a read cycle to SDRAM will still
occur, but the entire doubleword from SDRAM will be replaced with the more recent
doubleword in the write buffer. Read-merging maintains data coherency and enhances
SDRAM performance by notrequiring a flush of the write buffer contents to SDRAM before
every read cycle.

11-8 Elan™SC520 Microcontroller User’s Manual

Write Buffer and Read Buffer

AMDA

Figure 11-5 Write Buffer Read-Merging Example

— EEO001122

- Read
2 ' EEOOCDEF | Merge
o ftoooo o : Logic | . ______
Q. XXXXCDEF
£ = 8. _
Master Write Buffer (Data Segment)

< D[31:24] 11 cC 12
= D[23:16] 55 AA 34
g ppsel| |Fe|” |oo]oo|cD]s6
Q

DI7:0l| |FE 00 EF|78

-
2 2 $1 88|
3 A[27:2] m 2181818
@ BE[3:0] T 218188
© S S| S| o| o
Write Buffer (Address Segment)
Notes:

o
|

4

SDRAM

This example illustrates a 32-bit master read of address A0O00000h, which causes a read hit in
the write buffer. This causes the lower data word from the write buffer to be merged with the upper
data word from SDRAM, to return the entire doubleword to the requesting master.

11.5.1.3

Write Buffer Watermark

The write buffer provides a watermark setting of either 8, 16, 24 or 28 doublewords. As data
is written into the write buffer, a new rank of storage is allocated, provided that write-merging
or collapsing is not taking place. When a write cycle resulting in a rank being allocated

takes place that exceeds the watermark setting, the write buffer requests service from the
SDRAM controller to initiate write transfers to SDRAM.

m A higher watermark setting (i.e., 28 doublewords) allows the write buffer to acquire more
master write data prior to requesting SDRAM controller attention than a lower watermark
setting. If a large amount of incomplete doubleword writes (i.e., byte, word, or three byte
write transfers) is expected from either the Am5,86 CPU, PCI, or GP-DMA, a higher
watermark setting allows the write buffer to fill higher prior to requesting SDRAM setrvice,

resulting in a greater chance of write data merging or collapsing.

m A lower watermark setting can be used for applications that require more complete
doublewords, and where merging/collapsing of data is less likely. This causes the write
buffer to request SDRAM service at a lower threshold, thus reducing the chance of filling

the write buffer.

The write buffer watermark setting can be configured with the WB_WM bit in the SDRAM
Buffer Control (DBCTL) register (MMCR offset 40h). A waterrmark of 16 doublewords is
recommended. Note that the write buffer must be disabled before changing the write buffer

watermark.

Elan™SC520 Microcontroller User’s Manual

11-9

AMDZ\

Write Buffer and Read Buffer

11.5.2

11.5.2.1

11.5.2.2

The SDRAM controller’s arbiter supports a write buffer parkfeature, such that after the write
buffer's watermark is reached and requests SDRAM service, the SDRAM controller’s arbiter
continues to grant the write buffer SDRAM service, until either a master read cycle is
requested to SDRAM or a SDRAM refresh occurs. After the write buffer’s grant is removed,
the write buffer's watermark will need to be exceeded prior to the write buffer requesting
SDRAM service again. This park feature allows the write buffer to utilize SDRAM access
until a higher priority master read or an SDRAM refresh cycle is requested.

Read Buffer and the Read-Ahead Feature

The SDRAM controller contains eight 4-byte read data buffers. Combined, these buffers
make up the read buffer and are designed to hold two cache lines of data returned from
SDRAM. The read buffer is designed to increase SDRAM read performance by storing
previously read data from SDRAM and supplying this data in zero wait states to a requesting
master.

The SDRAM controller always fetches an entire cache line of data from SDRAM and stores
it in the read buffer, independently of the amount of data requested during the master
access. For example, during a read request from a non-bursting master (i.e., single
doubleword request), the SDRAM controller fetches the entire cache line of data from
SDRAM and stores it in the read buffer. When the read-ahead feature of the read buffer is
enabled and the master read access is a burst of two or more doublewords, not only is the
requested cache line (i.e., the demanded line) of data retrieved from SDRAM, but also the
cache line following it.

A demand fetch implies that the SDRAM controller will be servicing the read request from
the master as it occurs. When the read-ahead feature is enabled, a read-ahead prefetch
only occurs for master demand burst requests of two or more doublewords. The read-ahead
feature takes advantage of the linear forward-fetch nature of the Am5,86 CPU and PCI
bursts. GP-DMA transfers are non-burst, and thus do not result in a prefetch. However, GP-
DMA transfers can utilize the remainder of the cache line, since all read accesses result in
a cache line access to SDRAM.

The read buffer provides storage for two cache lines of read data and cannot be disabled.
The read-ahead feature of the read buffer can be disabled.

Read-Ahead Feature Disabled

When the read-ahead feature is disabled, the prefetch feature of the SDRAM controller is
disabled. All master read requests that occur to SDRAM are demand fetches and always
result in an entire cache line of data being read from SDRAM. Even when the read-ahead
feature is disabled, both cache lines of storage of the read buffer are still utilized and contain
the last two demand cache line fetches.

Read-Ahead Feature Enabled

When the read-ahead feature is enabled, following cache line prefetches from SDRAM wiill
occur when the read access is a burst of two or more doublewords. The prefetched cache
line always follows the demanded cache line. Should an access result in a read buffer hit,
the read-ahead logic will request the cache line following the access that is currently being
supplied from the read buffer.

The read buffer is organized as two cache lines of data and an associated address tag. On
every read cycle these tags are compared to the read address being requested. If the
compare results in a hit, this data is supplied to the requesting master in zero wait states.
If, during this hit, the next cache line of data does not already exist in the read buffer, the
prefetch logic will request it from SDRAM. Should a request result in a read buffer miss,
the demanded read cycle request is satisfied by SDRAM, and the prefetch logic starts a

11-10

Elan™SC520 Microcontroller User’s Manual

Write Buffer and Read Buffer AMD:'

11.5.3

request to acquire the next cache line. The demanded read cycle implies that the first
doubleword request by the master will be serviced first, such that the master can continue
while the remainder of the cache line is prefetched.

If the read-ahead feature of the read buffer is enabled, a prefetch occurs only for master
read access that results in a burst of two or more doublewords. Single doubleword read
requests do not result in a read-ahead prefetch and only result in the cache line of the
demanded access being read into the read buffer. GP-DMA read accesses are always a
single doubleword.

To maintain coherency in the system, each cache line of the read buffer has associated
with it a valid bit that represents the validity of the cache line. Both cache-line valid bits are
cleared on the occurrence of master write access to SDRAM or a write buffer write access
to SDRAM that hits a cache line currently available in the read buffer.

DMA Considerations

The read buffer and its associated read-ahead feature provide optimum performance for
burst-capable masters (during read cycles) that maintain long bus tenure (with burst
transfers of two or more doublewords). Most masters with burst capability burst forward an
entire cache line. For these masters, the read-ahead feature provides optimum
performance, such that the anticipated data prefetch will result in a read buffer hit.

m The read-ahead feature performs well during Am5,86 CPU burst reads (which usually
result in full cache-line burst when the cache is enabled). During cache-line fills, the
Am5,86 CPU can maintain bus tenure for more than one burst transfer, such that
successive bursts will be satisfied by read buffer prefetch hits.

m Also, during PCl master read burst requests, the read-ahead feature of the read buffer
performs equally well for PCI master tenure to SDRAM that requests a cache line of data.

m However, since the GP-DMA controller supports multiple channels and is capable of
operating in either single, demand or block transfer modes, it is possible that the read
buffer performance during GP-DMA transfers becomes dependent on the GP-DMA
channel configurations.

As mentioned earlier, the SDRAM controller always fetches an entire cache line from
SDRAM during a read request, even if the read-ahead feature is disabled. Since DMA
transfers are non-burst (i.e., single doubleword requests), even if the read-ahead feature
is enabled, only the rest of the cache line is fetched, rather than the rest of the cache line
and the following cache line, as would be seen during burst transfers of two or more
doublewords.

m A DMA channel configured for incrementing order that starts at the beginning of a cache
line takes full advantage of read buffer hit, since all following incrementing access should
result in a read buffer hit up to the cache-line boundary, assuming demand or block
transfer mode.

m DMA transfers that are configured for decrement mode will also see a read buffer benefit,
since the remainder of the cache line is fetched. For DMA transfers that are configured
for decrement mode, maximum read buffer performance is seen when the first access
is at the end of a cache-line boundary.

DMA transfer mode types can have a direct impact on read buffer performance. It would
be ideal for the same DMA channel to hit the read buffer as much as possible during its
tenure.

Elan™SC520 Microcontroller User’s Manual 11-11

AMDZ\

Write Buffer and Read Buffer

1 1 I5I4

11.5.4.1

11.5.4.2

In a system configured with multiple active DMA channels, read buffer misses will most
likely occur for each change of channeltenure. Thisis because each DMA channel accesses
different SDRAM regions that will most likely miss the read buffer, which still contains the
cache line of data fetched during the previous channel’s tenure. Therefore, it would be ideal
for as many transfers to occur as possible while a particular DMA channel has access to
SDRAM to utilize the rest of the cache line fetched during the DMA transfer’s first doubleword
request. This implies that, in a system with many active DMA channels configured for single
transfer mode, read buffer misses will occur that do not utilize the cache line of data fetched
during the previous channels tenure.

Demand and block DMA transfer modes will most likely take advantage of the rest of the
cache-line fetches, since devices that use these modes typically have longer bus tenure,
resulting in a higher utilization of the fetched data.

PCI Considerations

As a PCl target, the ElanSC520 microcontroller can respond to PCI master write and read
requests to SDRAM. To facilitate large burst transfers as a PCl target, a 64-level write data
FIFO and 64-level read data FIFO is available in the PCI target logic.

Write Cycles

For PCI master burst writes to SDRAM, the ElanSC520 microcontroller can sustain zero
wait states until the PCI target write FIFO is filled. As the FIFO is filling at the PCl interface,
data is being removed from the FIFO and written to SDRAM. When the SDRAM controller’s
write buffer is enabled, data can be quickly transferred from the PCI target write FIFO to
the SDRAM write buffer in zero wait states (to a non-full write buffer), allowing the PCl target
write FIFO to empty quickly. This prevents the PCI master from experiencing the SDRAM
latencies, thus freeing up the PCI bus earlier.

During PCl target write transfers to SDRAM, the Am5,86 CPU cache is snooped to maintain
coherency. If the CPU cache is configured in write-back cache mode and a snoop results
in a hit, the modified Am5,86 CPU cache line must be written back to memory prior to
allowing the PCI target write transfer to take place. When the write buffer is enabled, the
Am5,86 CPU cache-line write-back is posted to the write buffer, and the following PCl target
write transaction collapses on top of the previously written cache-line write-back, resulting
in a reduction in the overall number of transactions to memaory.

Read Cycles

In most applications, a PCI master transfers data to SDRAM and then interrupts the
processor when the transfer is complete. The processor then usually accesses this data in
SDRAM. Since the write buffer supports read-merging, associated data that is still in the
write buffer from the PCI transfer may be immediately read by the processor, without the
overhead of first flushing the write buffer before allowing the read to occur. Also, since the
SDRAM controller allows read-around-write activity when the write buffer is enabled, the
processor reads are allowed to occur around writes that are posted in the write buffer, thus
offering a performance increase to processor read requests.

During PCl master read transfers from SDRAM, the ElanSC520 microcontroller’'s PCl target
read FIFO is filled with data read from SDRAM. This data is then supplied to the requesting
PCI master directly from the target’s read FIFO. Since PCI bursts are linear and forward in
nature, the SDRAM controller’s read-ahead feature prefetches data (from SDRAM) forward
from the PCI master’s start address. As the ElanSC520 microcontroller's PCI target read
FIFO requests data from SDRAM, it is likely that these requests will result in read buffer
hits due to prefetching, thus providing data quickly to the PCI target read FIFO.

11-12

Elan™SC520 Microcontroller User’s Manual

Write Buffer and Read Buffer AMD:'

11.5.5

11.5.6

Large PCl burst requests will benefit more from the read-ahead function than short, frequent
independent PCI read transfers. Since the Am5,86 CPU is a major requestor of SDRAM
read accesses, short and frequent independent PCI transfers may result in read-ahead
thrashing. For example, data prefetched for Am5,86 CPU read requests may possibly not
be used by PCI read requests and data prefetched for the PCI request may possibly not
be used by the Am5,86 CPU.

Software Considerations
The write buffer and read buffer require minimal configuration overhead.

Data coherency is maintained in hardware during write buffer configuration changes. This
implies that when the write buffer is disabled, the contents are automatically flushed to
SDRAM as a high priority, prior to allowing any master activity to occur to SDRAM. Even
though a write buffer flush occurs automatically when it is disabled, a manual write buffer
flush control is provided for software control via the WB_FLUSH bit in the SDRAM Buffer
Control (DBCTL) register (MMCR offset 40h). If the read-ahead feature is disabled, the
prefetched data remains in the read buffer.

Both the write buffer and read-ahead feature of the read buffer are disabled after a system
reset or programmable reset. It is recommended that the write buffer be disabled prior to
SDRAM sizing, SDRAM test, or other software activity that must have guaranteed write
data delivery to the physical SDRAM array prior to reading. Failure to disable the write buffer
for these usages may result in false SDRAM sizing or test indications.

Typically during SDRAM sizing or test, SDRAM is written and then read back to determine
either if SDRAM exists at that location (during sizing) or if SDRAM is functional at that
location (during test). Since the write buffer provides a read-merging function to reduce the
overhead associated with maintaining data coherency, data is not forced from the write
buffer to SDRAM prior to the read-back of the data. (This overhead would normally be
required for non-snooping write buffers that do not support read-merging to maintain
coherency.) Should the read occur while the associated write data is still in the write buffer,
the correct data is read-merged with data from SDRAM, thus providing the correct read
data even though the write data was not yet written to SDRAM. If, in this scenario, SDRAM
was non-existent, it would appear as though it did exist, thus resulting in either an invalid
SDRAM size or false “pass” status during a SDRAM test algorithm. If the write data migrated
to SDRAM before the read-back, a correct indication would result.

The write buffer must be disabled only in these scenarios where software requires
guaranteed delivery of write data to SDRAM prior to testing. Under normal program
execution, the write buffer and read buffer “appear” as the SDRAM storage array.

SDRAM Bandwidth Improvements

When enabled, the performance benefit that the write buffer offers is its ability to effectively
decouple the master write activity from incurring the SDRAM latency penalty. This in effect
leaves the SDRAM free to satisfy a higher demand in read activity by all masters. To further
optimize this, when the write buffer is enabled, it allows master read requests to occur
around write data posted in the write buffer. In effect, read cycles are given priority to SDRAM
when the write buffer is enabled. However, there are conditions that give the write buffer
write priority to SDRAM over reads. These are:

m Flush priority is given to the write buffer when the write buffer configuration changes to
disabled.

m The user exercises the manual write buffer flush feature.

Elan™SC520 Microcontroller User’s Manual 11-13

AMDZ\

Write Buffer and Read Buffer

Since the write buffer supports data read-merging, data coherency overhead is kept to a
minimum. The write buffer's read-merging capability is possible due to the write buffer's
ability to snoop its own contents during read and write cycles. In the special case of a read
to an address contained in the write buffer, the overhead associated with flushing the entire
contents of the write buffer to maintain data coherency is eliminated. In this case, as data
is returned from SDRAM during the read cycle, more current data in the write buffer is
merged into the data stream, replacing older data bytes being returned from SDRAM. This
greatly enhances the read-around-write behavior by eliminating the overhead associated
with flushing the write buffer to maintain coherency.

The maximum write buffer performance is seen during individual contiguous byte writes to
SDRAM. For example, suppose the GP-DMA was performing a 64-byte block transfer from
an 8-bit device to SDRAM. Without the write buffer, this would require 64 individual byte-
wide transfers to SDRAM. Because of the write buffer's write data-merging capability, each
contiguous byte could be merged to form only 16 doubleword transfers to SDRAM. This
would reduce the total number of SDRAM writes cycles from 64 to 16 in this example.

The write buffer also improves memory system performance during heavy SDRAM write
data thrashing between multiple masters. Since the write buffer provides zero wait state
posting of write data, the SDRAM interface is freed up earlier to service another master’s
request. While the next master is arbitrating for SDRAM, the write buffer can concurrently
be writing back the data posted by previous masters. Therefore, during heavy SDRAM write
thrashing periods by multiple masters, the write buffer can help to hide the arbitration
overhead. This is shown in Figure 11-6.

Figure 11-6 Bus Thrashing with Write Buffer Disabled and Enabled

SDRAM access Arb SDRAM access Arb SDRAM access Arb SDRAM access
CPU Arb PCI Arb GP Bus Arb CPU
System with Write Buffer Disabled
SDRAM access SDRAM access SDRAM access SDRAM access
- > > > >|
<Arb= <A rb= <A rb= |
CPU Arb PCI Arb | GPBus | Arb CPU

System with Write Buffer Enabled

The maximum benefit of the read buffer's read-ahead feature is provided during consecutive
prefetch hits. This will most likely occur during long master burst tenure or consecutive
bursts by the same master. For example, suppose a PCI master requests a 256-byte (64-
doubleword) read transfer from SDRAM. Since the read buffer prefetches a cache line
forward and PCI burst transfers are linear and forward in nature, consecutive requests can
be satisfied by data prefetched by the read-ahead feature.

11-14

Elan™SC520 Microcontroller User’s Manual

Write Buffer and Read Buffer AMD:'

11.6

INITIALIZATION

The write buffer and read buffer are reset during a system reset. As a result of this system
reset event, the write buffer and read-ahead feature of the read buffer are both disabled,
and all associated state machines are returned to their idle states.

During a programmable reset, the write buffer's contents are reset and not maintained. The
contents of the read buffer are maintained during a programmable reset. The write buffer
and read-prefetch configuration are not preserved during a programmable reset. See
Chapter 6, “Reset Generation”, for more detailed information on this type of reset.

It is recommended that, prior to SDRAM sizing and test, the write buffer be disabled to
prevent false SDRAM sizing or test indications. Itis also recommended that, during SDRAM
sizing or test, the read-ahead feature is disabled. Having the read-ahead feature enabled
will notresult in false indications during sizing or test, but may result in a slight performance
degradation during the SDRAM sizing or test algorithm, because read accesses are not
consecutive in nature during sizing or test. After this period, the user is free to enable the
write buffer and read-ahead feature when desired.

Elan™SC520 Microcontroller User’s Manual 11-15

AMDﬂ Write Buffer and Read Buffer

11-16 Elan™SC520 Microcontroller User’s Manual

AMD X\

1 2 ROM/FLASH CONTROLLER

12.1

OVERVIEW

The ElanSC520 microcontroller includes an integrated ROM controller that provides a high
performance interface to ROMs, EPROMSs, and Flash devices. Improved performance is
achieved by supporting a full 32-bit data path and advanced page-mode devices.

Note that in this document the term ROM is used interchangeably with Flash and EPROM
for simplicity. In addition, the term ROM is used to denote the entire bank of ROM devices
connected to a chip select, e.g., a 32-bit ROM can be implemented as four discrete 8-bit
ROM devices.

Features of the ROM controller include;:

m Support for a wide variety of industry standard ROMs, EPROMs, and Flash devices,
including advanced page-mode devices.

m Three chip selects are provided. Each chip select supports up to 64 Mbytes.
— One chip select is dedicated to booting.

— The remaining two chip selects are optional and are multiplexed with GP bus chip
selects.

m Programmable timing for both non-page-mode and page-mode devices is supported.

m Programmable Address Region (PAR) register attributes provide code execution control,
cacheabilitity control, and write protection for Flash devices

The ElanSC520 microcontroller supports 8-bit, 16-bit, and 32-bit ROM configurations.

m The GP address bus is always used for the ROM address, but the ROM data bus can
be connected to either the GP bus data bus or the SDRAM data bus.

m For the boot device (BOOTCS), a set of configuration pins latched into the chip when
PWRGOOD is asserted is used to determine the width of the ROM array and which of
the two buses (GP bus or SDRAM interface) is used for the ROM data bus.

— The remaining two optional chip selects are configured via configuration registers in
the ROM controller.

m 8-bit and 16-bit ROM configurations are supported when ROMs are connected to either
the GP bus or the SDRAM data bus. 32-bit ROM configurations are supported only when
ROMSs are connected to the SDRAM data bus, as shown in Table 12-1.

Table 12-1

ROM/Flash Data Bus Connection Options

Data Bus 8-Bit ROM | 16-Bit ROM | 32-Bit ROM
GP Bus data pins Yes Yes No
SDRAM interface data pins Yes Yes Yes

Elan™SC520 Microcontroller User’s Manual 12-1

AMDZ\

ROM/Flash Controller

12.2

BLOCK DIAGRAM
Figure 12-1 shows a block diagram of the ROM controller.

Figure 12-1

ROM Controller Block Diagram

CFG2-CFGO0
Elan™SC520 Microcontroller Data Bus (GPD15-GPDO0 or MD31-MDO)
GPA25-GPAO
®
ROM Controller
Reset Pinstrap data
for BOOTCS o
> Configuration Registers g
O
|
BOOTCS ROMCS1 ROMCS2 @ %
o O
O |
o
AN
Configuration data %
Configuration data M
address[3-0] ;’
v rom_cycle T
v
D rdy, brdy _
CPU |¢ _y_ u ROMRD N
E)"be_o' blast, Programmable FLASHWR
ads, wlr, x5_ad[3-2] Timing Control BOOTCS
S ROMCS1*
BOOTCS _
PAR ROMCS1 ROMCS2*
Registers ROMCS?2 g ROMBUFOE
Wr_protect *May be multiplexed
ken with other pin
T functions.
cpu_clk (33 MHz
Clock Pu_cl()
12.3 SYSTEM DESIGN
See the Elan™SC520 Microcontroller Data Sheet, order #22003, for timing tables and
additional timing diagrams.
Configuration information for the boot device (BOOTCS), specifically the width of the ROM
and the location of the ROM, is provided by external pinstrapping. The CFG2 pinstrapping
defines the bus, either SDRAM or GP bus data bus, on which the ROM is located. The
CFG1-CFGO pins define the data width of the ROM devices. CFG2—CFGO are latched
when PWRGOOD is asserted. See “Initialization” on page 12-14 for more information.
12-2 Elan™SC520 Microcontroller User's Manual

ROM/Flash Controller AMD:'

The ROMCS1 and ROMCS?2 signals are provided to support two additional ROM chip
selects. These pins are shared with general-purpose chip selects, GPCS1 and GPCS2,
respectively, as shown in Table 12-2. When enabled, the multiplexed signals shown in
Table 12-2 either disable or alter any other function that uses the same pin.

Table 12-2

12.3.1

ROM Signals Shared with Other Interfaces

Default Signal | Alternate Function | Control Bit Register
ROMCS2 GPCS2 GPCS2_SEL | Chip Select Pin Function Select
ROMCS1 GPCS1 GPCS1 SEL (CSPFES) register (MMCR offset C24h)

The ROM controller can accommodate various performance and system voltage isolation
requirements. Depending on the operation voltage required by the ROM and the voltage
required by other devices sharing the same bus, the ROM data pins can be connected
either to the GP bus or to the SDRAM interface (see Figure 12-2). Note that the ROM data
pins must connect to only one interface per chip select (i.e., the ROM data pins may not
straddle the two buses).

m Devices can be placed on the SDRAM bus to gain the advantage of a 32-bit data path.
However, care must be taken by the system designer because of SDRAM loading and
timing issues. See “System Design” on page 10-1.

m Alternately, the ROM devices can be implemented on the GP bus data pins. These
devices are limited to 8- or 16-bits. See Table 12-1 for data width connection options.

Note that the addresses for ROM devices are always provided via GP bus, independently
of whether the data pins of the ROM are connected to the GP bus or SDRAM bus.

Voltage Isolation

From the ElanSC520 microcontroller’s perspective, both the SDRAM bus and the GP bus
are 5-V-tolerant and drive 3.3 V. However, an isolation buffer is necessary when using the
same bus for 5-V ROM devices and 3.3-V SDRAM devices that are not 5-V-tolerant. For
example, if the 3.3-V SDRAM devices are not 5-V-tolerant and share the data bus with
5-V ROM devices, the 3.3-V SDRAM devices could be damaged during ROM read access
if an isolation buffer is not used.

The ROMBUFOE signal is provided to support an isolation buffer, and this signal can be
used for devices on the SDRAM bus or the GP bus. Some scenarios for such a situation
are shown in Figure 12-2. The ROMBUFOE signal asserts during all accesses to ROM
devices, whether the devices are located on the SDRAM bus or the GP bus.

Note that the SDRAM controller’s read and write buffers are not utilized during accesses
to ROM devices. This is true even if a ROM device is located on the SDRAM bus. When
the SDRAM buffering is enabled, the ROM devices connected to the SDRAM data bus
(MD31- MDO0), must use ROMRD to control the ROM device’s data pins. In this case, the
system design should ensure that the external device does not drive data while ROMRD
is asserted.

When sharing the SDRAM data bus with ROM devices, the loading of the data bus requires
careful consideration. A buffer should be used on the data bus to prevent heavy loading by
the ROM devices. In a system that utilizes buffering of these devices, the ROMBUFOE
signal can be used to control the buffers. Similarly, data buffers can be used on the GP bus
to control loading issues, and the ROMBUFOE pin should still be used to control buffers in
front of these ROM devices.

Elan™SC520 Microcontroller User’s Manual 12-3

AMDﬂ ROM/Flash Controller

If the system has ROM devices on both the SDRAM data bus and the GP bus and data
bus buffers are used (on either bus), ROMBUFOE should be qualified with the appropriate
ROM chip selects and ROMRD, as needed, to prevent bus conflicts. For example, when
SDRAM buffering is enabled, the SDRAM controller could be attempting to complete posted
writes to the SDRAM. During this time, if the Am5,86 CPU performs a read from a ROM
device that is on the GP bus (data bus), the buffer on the SDRAM bus (which isolates the
ROM devices from the SDRAM) activates, unless its buffer control pins were also qualified
with the ROMCSx pin.

Figure 12-2 Voltage Isolation Examples

SDRAM
3.3-V SDRAM

Elan™SC520 Bus
Microcontroller

= Buffer === 5-V ROM

ROMBUFOE 4

GP Bus]
5-V Peripheral
SDRAM
Elan™SC520 s 3.3-V SDRAM

Microcontroller

— 3.3-VROM

GP Bus)
T 3.3-V Peripheral
3.3-V ROM
) SDRAM
Elan™SC520 B 3.3-V SDRAM
Microcontroller us ‘
3.3-V ROM
GP Bus
3.3-V ROM

=== Buffer === 5-V Peripheral

\4

GPDBUFOE
Notes:

Both the GP bus and the SDRAM bus can be operated at either 5V or 3.3 V.

12-4 Elan™SC520 Microcontroller User’s Manual

ROM/Flash Controller AMD:'

12.4

REGISTERS
Table 12-3 shows the memory-mapped registers used to configure the ROM controller.

Table 12-3

ROM Controller Registers—Memory-Mapped

Register

MMCR
Offset
Mnemonic Address Function

BOOTCS Control BOOTCSCTL 50h BOOTCS device select (SDRAM bus or GP

bus), device data width, device operation mode,
subsequent access delay, first access delay

ROMCS1 Control ROMCSI1CTL 54h ROMCS1 device select (SDRAM bus or GP

bus), device data width, device operation mode,
subsequent access delay, first access delay

ROMCS2 Control ROMCS2CTL 56h ROMCS?2 device select (SDRAM bus or GP

bus), device data width, device operation mode,
subsequent access delay, first access delay

Select

Chip Select Pin Function CSPFS C24h ROMCSx or GPCSx pin function select

12.5

12.5.1

OPERATION

ROM/Flash devices in a system are typically used to store two different kinds of information:
system configuration data and program code. These applications impose different
constraints on how to use the ROM/Flash memory in the system.

While it may be sufficient to load system configuration information from ROM/Flash at a
low speed, this may be not acceptable for accessing ROM-resident code that has to be
executed. In this case, this code has to be copied either to SDRAM or executed directly
from ROM. (See Chapter 3, “System Initialization” for more information on shadowing.)

For copying code blocks, the ROM performance may not be critical, because it is only
accessed once per copy operation. For the more critical situation of executing code directly
from the ROM (e.g., an Execute-In-Place operating system), precautions have to be taken
to ensure an accelerated ROM access even for ROM devices incapable of bursting.

This chapter discusses different configurations and operating modes that are appropriate
for these varying situations.

ROM Support

Each of the three chip selects included on the ElanSC520 microcontroller supports up to
64 Mbytes. Some example configurations for each chip select are:

m Four 1-Mbit x 8 devices on the 32-bit SDRAM data bus for a total of 4 Mbytes

m Two banks of ROM, with each bank containing four 8-Mbit x 8 devices, providing a total
of 64 Mbytes

m Two banks of ROM, with each bank containing two 8-Mbit x 16 devices, providing a total
of 64 Mbytes

m Four banks of ROM, with each bank containing two 8-Mbit x 8 devices, providing a total
of 64 Mbytes

Elan™SC520 Microcontroller User’s Manual 12-5

AMDZ\

ROM/Flash Controller

12.5.1.1

ROM devices are accessible by the Am5,86 CPU only. Normal operation of the ElanSC520
microcontroller is not guaranteed if an external PCI master or GP-DMA cycle results in a
ROM access.

The addresses for ROM devices are always provided via the GP bus, independently of
whether the data pins of the ROM are connected to the GP bus or SDRAM bus.

The ROM controller never bus-sizes read accesses to the Am5,86 CPU. In other words,
bs16 and bs8 are never asserted for a ROM read access. Rather, the ROM controller
gathers as much data as the Am5,86 CPU is requesting for read accesses. To accomplish
this, the ROM controller monitors the internal byte enable signals, be3-be0, and the
cacheability status of the access. Based on the byte enables, the ROM controller returns
one to four bytes for non-burst Am5,86 CPU cycles and up to an entire cache line, 16 bytes,
for burst accesses.

The ROM controller does not support burst-write or multiple data operations during write
cycles. Writes to ROM devices typically have no performance issues. The ROM controller
returns rdy, rather than brdy, to the Am5,86 CPU during write operations. In addition, the
Amb5,86 CPU signals bs8 and bs16 are asserted based on data size of the selected ROM
deV|ce

Supported Device Types
The ROM controller supports two ROM device types:

m Non-page-mode ROM—A ROM device that always has the same access delay,
regardless of how much data is requested from the ROM.

m Advanced page-mode ROM—These devices improve performance by allowing fast
multiple access of data within the same memaory page. The ROM controller has no upper
limit on the page size of the ROM device and works with any device that supports a page
size of four. However, after the fourth entry in the page, the ROM controller issues a new
initial access.The page is opened during the initial access, allowing faster data reads
from subsequent locations within the page simply by strobing the lower address bits.

Non-page-mode and advanced page-mode ROMs do not require a clock signal.

Figure 12-3 illustrates a read of four words from a 16-bit advanced page-mode ROM. Note
that the write buffer associated with the SDRAM controller has no relevance for the ROM
controller, because it applies only to SDRAM accesses.

Figure 12-3 Page-Mode ROM: Fetching Four Words from a 16-Bit ROM

Notes:

GPA25-GPAO ---0h --- 2R ---4hY---6h}{] Subsequent reads occur

Bytes 0-1 Bytes 2-3 Bytes 45 Bytes 6-7 within the same memory

MD31-MDO w page, by changing the lower

address bits only, resulting in
a fast access of eight bytes.

ROMRD 0
BOOTCS N\

Initial memory page opened here

12-6

Elan™SC520 Microcontroller User’s Manual

ROM/Flash Controller AMD:'

12.5.2

12.5.2.1

12.5.2.2

12.5.2.3

ROM Control and Timing Configuration

The ElanSC520 microcontroller provides ROM device configuration per chip select for the
following:

m ROM location (on GP data bus or SDRAM data bus)
m ROM width (8, 16, or 32 bits)

m Operating mode (page-mode or non-page-mode)

m Access timing

ROM Location

The GP bus address is always used for the ROM address, but the ROM data bus can be
connected to either the GP bus data bus or the SDRAM data bus.

For the boot device (BOOTCS), the CFG2 pinstrap is used to determine which of the two
buses is used for the ROM data bus. For all other ROM devices (ROMCS1 and ROMCS2),
this configuration information must be programmed by the initialization software.

m The DGP bit in the BOOTCS Control (BOOTCSCTL) register (MMCR offset 50h)
contains the value latched from the CFG2 pinstrap when the PWRGOOD pin is asserted.

m The DGP bit in the ROMCS1 and ROMCS2 control registers is used to configure the
location of the ROM devices enabled by these two chip selects.

ROM Width
ROM device widths of 8 bits, 16 bits, and 32 bits are supported.
The CFG1-CFGO pinstraps are used to determine the width of the boot device (BOOTCS).

For all other ROM devices (ROMCS1 and ROMCS2), this configuration information must
be programmed by the initialization software.

m The WIDTH bit field in the BOOTCS Control (BOOTCSCTL) register contains the value
latched from the CFG1-CFGO pinstraps when the PWRGOOD pin is asserted.

m The WIDTH bit field in the ROMCS1 and ROMCS2 control registers is used to configure
the width of the ROM devices enabled by these two chip selects.

Operating Mode

The MODE bitin the control registers provided for each chip select signal is used to program
the operating mode of the associated device.

According to the different data delivery rates, the following operation modes are
distinguished:

m Non-page mode—Characterized as having the same access time for all cycles.
Figure 12-4 shows a ROM that is capable of three wait state operation.

m Page mode—Provides faster timing for subsequent data that falls within the page-size
of the ROM device. Figure 12-5 shows an advanced page-mode ROM that is capable
of one wait state for the first access and zero wait states for subsequent accesses.

If an unaligned access to a page-mode device is executed, i.e., when not all data are located
in the same ROM page, a new page has to be opened, which imposes an additional delay
(see Figure 12-6). Random access within a page is not supported.

Elan™SC520 Microcontroller User’s Manual 12-7

AMDﬂ ROM/Flash Controller

Figure 12-4 Non-Page-Mode ROM: Fetching Four Words from a 16-Bit ROM

GPA25-GPAO [—--O0R ¥ —--2h V ——-ah —8h]
GPD15-GPDO, or
! A [\ 2}
MD15-MDO L) {2 3 {4
ROMRD — r
BOOTCS —\ /

Figure 12-5 Page-Mode ROM: Fetching Four Doublewords (Aligned) from a 32-Bit ROM

GPA25-GPAO (~--0h V---4hY ---8h)---ch{ |

MD31-MDO
ROMRD —\ [
BOOTCS —\

Figure 12-6 Page-Mode ROM: Fetching Four Doublewords (Unaligned) from an 8-Bit ROM

GPA25-GPAO [X 2 33X 4 55X 1
GPD7-GPDO, or A
MD7—-MDO (4)
ROMRD \ '
BOOTCS ~ \ I
Page crossing

12.5.2.4 Access Timing
Access timing is controlled in the BOOTCS or ROMCSx Control registers.

— The delay for the first access, used for both non-page-mode and page-mode, and
subsequent accesses for non-page-mode is specified in the FIRST_DLY bit field.

— The delay for subsequent accesses, for page-mode only, is specified in the SUB_DLY
bit field.

Table 12-4 shows the access timing according to the programmed wait states. These values
can be obtained using the following formula:

AccessTime = (NumberWaitstates + 1) * Period —Setup)
where:
Period is the clock period (assume 30 ns for a 33.333-MHz crystal)

Setup is assumed to be 20 ns. (It takes the actual setup time and the delay for address
changes during subsequent ROM accesses into account.)

12-8 Elan™SC520 Microcontroller User’s Manual

ROM/Flash Controller

AMDA

Table 12-4 Example: ROM Access Timing and Wait States’
Wait States Access Timing (ns)
0 10
1 40
2 70
4 130
Notes:
1. This example assumes that a 33.333-MHz
crystal is being used in the system.
12.5.3 Bus Cycles
The ROM controller always returns the amount of read data requested by the Am5,86 CPU,
i.e., brdy is returned for all read transfers from ROM. The actual number of ROM accesses
is determined by the cacheability status of the Am5,86 CPU transfer, the number of bytes
requested, and the width of the ROM. The minimum number of data to be transferred is
one byte. The maximum number of data to be delivered is 16 bytes (a cache-line fill).
Depending on the ROM width, this leads to different numbers of accesses to fetch the
requested data (see Table 12-5).
Table 12-5 Accesses and ROM Width
Minimum Number of Maximum Number of
ROM Width Accesses Accesses (Cache-Line Fill)
8 bit 1 16
16 bit 1 8
32 bit 1 4
12.5.3.1 Single CPU Read Access

Figure 12-7 shows an example for the fetching of 16-bits of data, GPD15-GPDO, from an
8-bit non-page-mode ROM configured for one wait state. The transfer starts with a bus
cycle initiation (i.e., ads asserted). The ROM controller then performs two ROM accesses
and accumulates the amount of requested data prior to terminating the cycle. Note that
only one ROM cycle would be performed had the ROM device been implemented as 16-
or 32-bit.

Elan™SC520 Microcontroller User’s Manual 12-9

AMDZ\

ROM/Flash Controller

Figure 12-7

GPD7-GPDO, or m) 1)

Multiple Accesses: Data Amounts Smaller than One Doubleword (2 Bytes) from
an 8-Bit ROM

CPU clock ‘ ‘ |

ads

I
GPA25-GPAO (

ADR+0 X ADR+1 |

MD7-MDO = o

Brdy — — @

blast X \

ROMRD —
BOOTCS —\

Notes: An 8-bit ROM is attached to the 16-bit GP bus.

12.5.3.2

Page-Mode Read Access

The ROM controller also provides performance advantages for Am5,86 CPU burst
operation. Further improvement can be achieved when using page-mode ROMs. An
example is shown in Figure 12-8 for a 2-1-1-1 burst sequence, in which the first access
requires two cycles and all subsequent accesses are performed within one cycle.

Figure 12-8

Page Access for Fetching Four Doublewords from a 32-Bit ROM
(Burst Sequence: 2-1-1-1)

CPUclock [[[L [[[L[[[1
— _itartcycle

GPA25-GPAO [---C | Y---8 (---4)--r0)

MD31-MDO — [V{1 {

bdy — O\ / /L L/

blast [X 7 |/

BOOTCS ~ \
ROMRD ~— '\ /[

During burst transfers to ROM devices with a data width smaller than 32 bits, the ROM
controller executes multiple cycles to gather the requested data. During a 32-bit request to
a 16-bit device, the ROM controller executes two 16-bit cycles. During a 32-bit request to
an 8-bit device, the ROM controller executes four 8-bit cycles. A 32-bit request to a 16-bit
ROM device is shown in Figure 12-9.

12-10

Elan™SC520 Microcontroller User’s Manual

ROM/Flash Controller AMD:'

Figure 12-9 Page Access for Fetching Two Doublewords from a 16-Bit ROM

CPU clock | \ \ | | \ \ [
— start cycle
ads —\ "~/
GPA25-GPA2 _.-C J ---8 V]

(
GPA1-GPAO [Y 0 (2)0 2)]

GPD15-GPDO, or
MD15-MDO

]
L]
o
]

brdy — -

blast / \ /
BOOTCS \

ROMRD — /.

12.5.3.3 Cache-Line Fill

If a memory section is accessed that is cacheable, the ken signal is asserted to the Am5, 86
CPU indicating a cache-line fill operation. This causes the Am5,86 CPU to read four
doublewords (16 bytes) and leads to multiple ROM accesses. A cache-line fill to a 32-bit
ROM is depicted in Figure 12-10.

Figure 12-10 Cache-Line Fill (Fetching Four Doublewords from a 32-Bit ROM)

CPUclock [[[L[L[L[LI L[LI LILD
ads _ /

ken \

GPA25-GPAO0 [(_---C_ ¥ ---8 (---4_ _--t0 ¥

MD31-MDO) S .

L]
-
T

brdy

blast

BOOTCS

JJQ

ROMRD

12.5.3.4 Writing to Flash Devices

The ElanSC520 microcontroller supports writable Flash devices. Since Flash devices are
not intended for random write accesses, no burst-write operations are supported, i.e., rdy
is returned to the Am5,86 CPU. Figure 12-11 shows a write cycle to a Flash ROM. In

addition, for write accesses, the ROM controller bus-sizes ROM accesses to indicate the

Elan™SC520 Microcontroller User’s Manual 12-11

AMDZ\

ROM/Flash Controller

width of the ROM device, e.g., if a 16-bit write is performed to an 8-bit ROM, two Am5,86
CPU write cycles are generated to complete the operation.

All write access to Flash devices must occur in units no smaller than the data width of the
device. For example, 8-bit writes to a 16-bit Flash device are not allowed. Care should be
taken to also avoid 24-bit writes to 16-bit Flash devices, because this generates two Flash
cycles, one with a complete 16-bit write and another with an 8-bit write to a 16-bit Flash
device.

Figure 12-11 Word Write Cycle to Flash Memory

CPUclock ™ [1| L L

ads \

GPA25-GPAO (address)

GPD15-GPDO, or [W

MD15-MDO

rdy \ /—
bs16

FLASHWR \ /
BOOTCS \

12.5.4
12.5.4.1

12.5.4.2

Software Considerations
Address Decoding

The ROM controller does not perform address decoding. Address decoding for chip select
generation is provided by the Programmable Address Region (PAR) registers. In addition
to the regions defined in the PAR registers, a default region from FFFFO000—-FFFFFFFFh
is defined at system reset to handle early code fetches from the boot ROM. See Chapter 3,
“System Initialization”, and Chapter 4, “System Address Mapping”, for further details on
configuring the address regions for ROM chip selects and the shadowing of ROM.

Programming Flash Memory

Flash is available in 8-bit and 16-bit versions and is organized into sectors. Sectors can be
of fixed or variable size and range from 8-32 Kbytes. New, higher density Flash devices
have sector sizes of up to 256 Kbytes.

Several programmable operations can be performed on Flash devices, including sector
erase, sector protect, and programming of individual bytes.

m The erased value of a byte is OFFh.
m Bits can be programmed from a 1 to a 0.

m [f any bit in a sector needs to be changed from a 0 to a 1, the entire sector must be
erased and reprogrammed.

Most Flash devices cannot be programmed while the Am5,86 CPU is fetching data from
it, requiring the programming code to reside in another device during programming. This

12-12

Elan™SC520 Microcontroller User’s Manual

ROM/Flash Controller AMD:'

12.5.5

is an easy restriction to overcome, because programming Flash is usually done during non-
performance critical periods, such as during user configuration. However, new “dual boot”
Flash allows fetching instructions from one portion of the device while programming or
erasing a sector in another portion.

Typically, Flash is programmed (or erased) by writing a program command sequence to an
address within the sector to be modified, followed by the erase command or the target
address and data.

An example program command sequence is:

1. Write the byte AAh to address 555h within the sector.
2. Write the byte 55h to address 2AAh within the sector.
3. Write the byte AOh to address 555h within the sector.
4

. Write the actual data to the actual address. If the base of a 1-MByte boot device is at
OFFF00000h, then a programming sequence for the first sector would start at address
OFFF00555h.

The actual values and addresses used vary by device.

After issuing the command, the programming code must wait until the embedded algorithm
is complete before sending further programming requests to the Flash device. There are
several ways to determine this.

m One way is to poll the status of a ready/busy hardware pin (which would be connected
to a PI1O pin).

m The second way is to continually read the address that was programmed, looking for
one of several indications that the event is complete.

A typical waiting period is 16 ms. Sector erase can take from 1 s to up to 10 s near the end
of the serviceable life of the device.

Both the program command sequence and the status read have implications for the use of
the ElanSC520 microcontroller in Flash programming applications.

First, the area being programmed must set to be noncacheable. Writing the program
command sequence does not actually change the physical addresses involved, meaning
that caching this area would yield incorrect data the next time it is read. Also, the status
read phase relies on the value of externally supplied bits to change from one read to another.
Obviously, satisfying such a read from the cache would not work. Once the programming
is complete, it is legitimate and desirable to enable caching on this region.

Another obvious implication is that programming Flash device requires a write strobe to be
connected to the device. Devices are programmed in their natural word length, meaning
that byte write enables are not required. During writes, there are minimum times for the
write strobe pulse width. These follow naturally from the total chip enable cycle time, which
would be used to determine the number of wait states to use when accessing the device
for reads, requiring no special timing modifications. Flash requires a minimum reset pulse
width of 500 ns, which is well within the ElanSC520 microcontroller’s minimum time.

Latency

ROM latency refers to the amount of time in which a ROM access can impact system
performance. For example, during an Am5,86 CPU access to ROM, no other master in the
system will be granted access to the SDRAM resource. The latency time will be mainly
affected by the width and the access time of the ROM device.

Elan™SC520 Microcontroller User’s Manual 12-13

AMDZ\

ROM/Flash Controller

12.6

The lowest latency times can be achieved if fast 32-bit ROMs are implemented for Execute-
In-Place (XIP) operating systems or for data structures that are accessed frequently. This
ensures a rapid data transfer, which frees up the SDRAM resource for access by other
masters.

For example, if four doublewords are accessed from a 2-1-1-1 advanced page-mode ROM,
five clock cycles are required to load this data. However, loading the same amount of data
from an 8-bit, non-page-mode ROM results in 48 clock cycles, assuming two wait states
per ROM access. While the first approach promises reasonable performance, the latter
imposes a latency that is possibly unacceptable.

INITIALIZATION

The ROM controller is connected to the ElanSC520 microcontroller’s system reset.
The system designer must define the boot ROM configuration devices connected to
BOOTCS using pinstrapping. The CFG2—CFGO pins provided on the ElanSC520

microcontroller are latched at the assertion of PWRGOOD to define the location and data
width of the boot device, as shown in Table 12-6.

m CFG2 defines whether the boot device is located on the SDRAM data bus or GP bus
data bus.

m CFG1-CFGO define the data width of the boot device.

m BOOTCS s forced active at system reset. Boot code must then initialize a Programmable
Address Region (PAR) register to decode the required space for the boot ROM device.
See “External ROM Devices” on page 3-17 for examples.

Table 12-6

CFGx Pinstrap Configuration Options for BOOTCS

CFG2 CFG1 CFGO BOOTCS Data Width | BOOTCS Location
0 0 0 8-bit GP bus
0 0 1 16-bit GP bus
1 0 0 8-bit SDRAM bus
1 0 1 16-bit SDRAM bus
1 1 X (don’t care) | 32-bit SDRAM bus

Non-boot devices that exist on ROMCS1 and ROMCS2 do not require pinstrapping and
are configured with the ROM configuration registers.

At system reset, the ROM controller is enabled for BOOTCS only. The following steps should
be taken to further configure BOOTCS and/or to enable other ROM devices.

1. Configure the ROM width, mode, access timing, and location in the BOOTCS Control
(BOOTCSCTL) register (MMCR offset 50h), the ROMCS1 Control (ROMCS1CTL)
register (MMCR offset 54h), and/or the ROMCS2 Control (ROMCS2CTL) register
(MMCR offset 56h).

2. Set up the address range and the cacheability control, write protection, and code
execution control attributes for the BOOTCS device or the ROMCSx device in the PAR
registers.

12-14

Elan™SC520 Microcontroller User’s Manual

AMD X\

1

GENERAL-PURPOSE BUS
CONTROLLER

13.1

13.2

13.3

OVERVIEW

The ElanSC520 microcontroller includes an integrated general-purpose bus (GP bus)
controller. The GP bus is an internal and external bus that connects 8-bit or 16-bit peripheral
devices and memory to the ElanSC520 microcontroller without glue logic.The GP bus
operates at 33 MHz, which provides good performance at very low interface cost.

Features of the general-purpose bus controller include:

m Up to eight external chip selects (GPCS7-GPCS0)

m Supports 8- and 16-bit I/O and memory cycles

m Programmable bus interface timing

m Dynamic bus sizing using GPIOCS16 and GPMEMCS16

m Dynamic wait state support for external devices using GPRDY

m Up to 64 Mbytes of memory address space per chip select
m Supports 8- and 16-bit DMA initiators

BLOCK DIAGRAM
Figure 13-1 shows the block diagram of the GP bus controller.

SYSTEM DESIGN

Table 13-1 shows GP bus signals shared with other interfaces on the ElanSC520
microcontroller. The pinstrap functions associated with the GPA25-GPA14 pins are
sampled only as a result of PWRGOOD assertion and do not affect the GP bus functions
of these pins, so they are not shown in this table. When enabled, the multiplexed signals
shown in Table 13-1 either disable or alter any other function that uses the same pin.

A ROM device’s data bus can be connected to either the GP bus data bus or the SDRAM
data bus. However, the addresses for ROM devices are always provided via the GP bus,
independently of whether the data pins of the ROM are connected to the GP bus or SDRAM
bus. In either case, the ROM access shares GPA25-GPAO with the GP bus.

For additional system diagrams using the GP bus, see “Interfacing with a Super I/O
Controller” on page 13-13 and “Interfacing with an AMD Enhanced Serial Communications
Controller (8 MHz)” on page 13-14.

See the Elan™SC520 Microcontroller Data Sheet, order #22003, for timing tables and
additional timing diagrams.

Elan™SC520 Microcontroller User’s Manual 13-1

AMDZ\

General-Purpose Bus Controller

Figure 13-1

GP Bus Controller System Block Diagram

Elan™SC520 Microcontroller
WDT UART1 UART2 RTC PIC [€&— Reset » GPRESET
A A
Y GPIRQ10—
GPIRQO,
p Internal GP Bus \ INTA-INTD
v \ 4
Ssl Timers = PIO GP-DMA p GPA25-GPAL5™
g GPA14-GPAO
Q
= E P GPD15-GPDO
|.9_ g
58
GP Bus Controller
From CPU- Echo mode select » GPDBUFOE*
_ MUX
m/io -
o > 4 < GPIOCS16*
riw — p - =
6 GP Bus gl < GPMEMCS16*
—— Control % » GPBHE*
< Ps16 State Machine Configuration < GPRDY*
- Registers » GPALE*
be3-bel |
> , GPCS7—
"~ GPCSO0*
l hv\ » GPMEMRD
» GPMEMWR
Programmable N
Interface 1 EPIOBRD
- _ » GPIORD
Timing gior, giow, MUX
Control gmemr, gmemw, » GPIOWR
e > » GPAEN*
| —
dior, diow,
dmemr, dmemw,
daen
» GPTC*
Programmable GP-DMA P GPDRQ3—
Divider State Machine b GPDRQO*
33 MHz > » GPDACK3—
GPDACKO*
*Multiplexed pins
**Has pinstrap
function
13-2 Elan™SC520 Microcontroller User's Manual

General-Purpose Bus Controller

AMDA

Table 13-1

GP Bus Signals Shared with Other Interfaces

Interface or

Default Alternate

Signal Function Control Bit Register

TMROUTO | GPCS7 GPCS7_SEL Chip Select Pin Function Select (CSPFS)
TMROUT1 | GPCS6 GPCS6_SEL register (MMCR offset C24h)
TMRINO GPCS5 GPCS5_SEL

TMRIN1 GPCS4 GPCS4_SEL

PITGATE2 |GPCS3 GPCS3_SEL

ROMCS2 |GPCS2 GPCS2_SEL

ROMCS1 |GPCS1 GPCS1_SEL

P1027 GPCSO PIO27_FNC PIO31-Pl016 Pin Function Select
PIO26 GPMEMCS16 PIO26 ENC (PIOPFS31_16) register (MMCR offset
PIO25 GPIOCS16 PIO25 FNC c22h)

P1024 GPDBUFOE P1024_FNC

P1023 GPIRQO P1023_FNC

P1022 GPIRQ1 P1022_FNC

P1021 GPIRQ2 P1021_FNC

P1020 GPIRQ3 P1020_FNC

PI019 GPIRQ4 PI019_FNC

P1018 GPIRQ5 PIO18_FNC

PIO17 GPIRQ6 PIO17_FNC

PIO16 GPIRQ7 P1016_FNC

P1015 GPIRQS8 PIO15 FNC PIO15-PIO0 Pin Function Select
PIO14 GPIRQ9 PIO14_FNC (CP2|8$F815_0) register (MMCR offset
P1013 GPIRQ10 PIO13_FNC

PlO12 GPDACKO PIO12_FNC

PlO11 GPDACK1 PIO11_FNC

PI010 GPDACK2 PIO10_FNC

PIO9 GPDACK3 PIO9_FNC

PIO8 GPDRQO PIO8_FNC

PIO7 GPDRQ1 PIO7_FNC

PIO6 GPDRQ2 PIO6_FNC

PIO5 GPDRQ3 PIO5_FNC

PIO4 GPTC PIO4_FNC

PIO3 GPAEN PIO3_FNC

PIO2 GPRDY PIO2_FNC

PlO1 GPBHE PIO1_FNC

PIO0 GPALE PIO0_FNC

Elan™SC520 Microcontroller User’s Manual

13-3

AMDﬂ General-Purpose Bus Controller

13.3.1 GP Bus Loading

As more external devices are connected to the GP bus, loading on GPA25-GPAO and
GPD15-GPDO will increase. Therefore, the rise time and fall time of GPA25-GPAO and
GPD15-GPDO will increase, and external buffers may be needed to reduce the loading.

The GP bus provides the GPDBUFOE pin for external buffer control to reduce the loading.
This signal is asserted for all accesses to external GP bus peripherals. It is not asserted
during accesses to the internal peripherals (regardless of the GP bus echo mode setting).

Figure 13-2 shows an example using an external data buffer. The GPDBUFOE pin can be
used to enable the data buffer, and the GPIORD or GPMEMRD can be qualified together
to select the direction of the data buffer. If all devices on the GP bus are only I/O-mapped
devices, the AND gate in Figure 13-2 is not required. The GPIORD pin can be used to
control the direction of the data transceiver. A similar simplification can be applied if all
devices are memory-mapped using the GPMEMRD pin.

Figure 13-2 Example: Using an External Data Buffer to Address Excess Loading

GPDBUFOE > EN
GPIORD
GPMEMRD DIR
Elan™SC520 Microcontroller
XCVR
Data Bus*
- GPD15-GPDO >

Notes:
If the GP address bus must be buffered, ensure that the buffer is always enabled.
* All GP bus peripherals connect their data to this bus.

The GPIOCS16, GPMEMCS16, and GPRDY pins are typically driven by open-drain outputs
from external devices and require a strong pullup resistor (typically 1 Kohm) external to the

ElanSC520 microcontroller. The GPIRQXx pins also require pullup resistors (typically 1
Kohm).

13.3.2 Voltage Translation

The GP bus provides 5-V- tolerant inputs and 3-V outputs, but if the external devices contain
both 3-V and 5-V devices, the GPDBUFOE pin qualified with a GPCSx signal can be used
to control the voltage translator. Figure 13-3 shows one example of using a voltage
translator.

13-4 Elan™SC520 Microcontroller User’s Manual

General-Purpose Bus Controller AMDl‘yl

Figure 13-3 Example: Using a Voltage Translator

GPCSx
GPDBUFOE) =)
Voltage
Elan™SC520 Microcontroller VrErskier
XCVR
GPIORD
GPMEMRD DIR
5-V Data
GPD15—-GPDO
- - >
3-V Data

Notes:
GPCSx is the chip select for the 5-V peripheral.

13.4 REGISTERS
Table 13-2 shows the memory-mapped registers used to configure the GP bus controller.

Table 13-2 GP Bus Registers—Memory-Mapped

MMCR
Offset
Register Mnemonic Address Function
GP Echo Mode GPECHO CO00h Echo mode enable
GP Chip Select Data Width | GPCSDW CO01h Individual data width select for GPCS7-GPCSO0
GP Chip Select Qualification | GPCSQUAL CO02h Individual chip select qualification with GPIORD,
GPIOWR, GPMEMRD, or GPMEMWR
GP Chip Select Recovery GPCSRT C08h Global chip select recovery time for all GP bus
Time cycles. Affects all GP bus chip selects.
GP Chip Select Pulse Width | GPCSPW C0%h Global width selection for all chip select signals,
measured from the offset
GP Chip Select Offset GPCSOFF COAh Global offset time selection for all chip selects
from the beginning of the bus cycle
GP Read Pulse Width GPRDW CO0Bh Width of the GPIORD and GPMEMRD signals
from the offset
GP Read Offset GPRDOFF COCh Offset from the beginning of the bus cycle for
GPIORD and GPMEMRD
GP Write Pulse Width GPWRW CODh Width of the GPIOWR and GPMEMWR signals
from the offset

Elan™SC520 Microcontroller User’s Manual 13-5

AMDZ\

General-Purpose Bus Controller

Table 13-2 GP Bus Registers—Memory-Mapped (Continued)
MMCR
Offset
Register Mnemonic Address Function
GP Write Offset GPWROFF COEh Offset from the beginning of the bus cycle for
GPIOWR and GPMEMWR
GP ALE Pulse Width GPALEW COFh Width of the GPALE signal from the offset
GP ALE Offset GPALEOFF C10h Offset from the beginning of the bus cycle for
GPALE
P1015-PIO0 Pin Function PIOPFS15 0 C20h P1015-PIO0 or interface function select:
Select GPIRQ10-GPIRQ8, GPDACK3-GPDACKAO,
GPDRQ3-GPDRQ3, GPTC, GPAEN, GPRDY,
GPBHE, GPALE
P1031-P1016 Pin Function | PIOPFS31_16 C22h P1031-P1016 orinterface function select: RIN2,
Select DCD2, DSR2, CTS2, GPCS0, GPMEMCSL16,
GPIOCS16, GPDBUFOE, GPIRQ7-GPIRQO0
Chip Select Pin Function CSPFS C24h GPCS7-GPCS1 or alternate function select:
Select TMROUT1-TMROUTO, TMRIN1-TMRINO,
PITGATE2, ROMCS2, ROMCS1
Reset Configuration RESCFG D72h Control bit for GP bus reset (GPRESET)
13.5 OPERATION

The GP bus provides a simple interface to the integrated on-chip peripherals, as well as
external peripherals. The GP bus operates at 33 MHz.

The GP bus controller provides one fixed timing set for the internal peripherals and one
programmable timing set for the external peripherals.

Internal to the ElanSC520 microcontroller, the GP bus is used to provide a full complement
of integrated peripherals such as a DMA controller, programmable interrupt controller PIC),
programmable interval timer (PIT), UARTS, and real-time clock (RTC). The internal
peripherals are designed to operate at the full clock rate of the GP bus. They can also be
configured to operate in PC/AT-compatible configuration, but are generally not restricted to
this configuration.

The GP bus interface can be programmed by software to control the interface timing
betweenthe GP bus and the external devices. The GP businterface supports programmable
timing, dynamic data width sizing, and cycle stretching to accommodate a wide variety of
standard peripherals.

Eight chip selects are provided for external GP bus devices. They can be used for either
memory or I/O accesses. These chip selects are asserted for Am5,86 CPU accesses to
the corresponding regions set up in the Programmable Address Region (PAR) registers.

Four external DMA channels provide fly-by DMA transfers between peripheral devices on
the GP bus and system SDRAM.

GP bus accesses can be initiated only by the Am5,86 CPU or by the integrated GP bus
DMA controller. The devices on the GP bus are not cacheable from the Am5,86 CPU’s
viewpoint, to enable a simple user view of devices (memory and peripherals) that are located
on the GP bus.

13-6

Elan™SC520 Microcontroller User’s Manual

General-Purpose Bus Controller AMD:'

13.5.1

13.5.1.1

The GP bus also provides an echo mode that is useful for debugging. If GP bus echo mode
enabled, the internal GP bus cycle is echoed out on the external pins to enable visibility of
internal cycles. Accesses to internal peripherals that are “echoed” out utilize the
programmed timing set to ensure that there is no timing conflict with other external
peripherals. Note that enabling echo mode does not affect the operation of GP-DMA
accesses or GP bus external accesses.

Programmable Bus Interface Timing

The bus interface timing can be programmed for the following signals:
Chip selects GPCS7-GPCSO0

Read strobes GPIORD and GPMEMRD

Write strobes GPIOWR and GPMEMWR

Address latch enable GPALE

For each of these signal types, the following parameters can be programmed:
m Offset from beginning of the bus cycle
m Pulse width from end of the offset

m Chip select recovery time

Figure 13-4 shows the shows the relationships between the various adjustable GP bus
timing parameters. The actual time can be calculated with the following formula:

(REG_VAL + 1) * T

where:
REG_VAL = register content value
TcLk = internal clock period

The minimum offset, pulse width and recovery time is 30 ns (for a 33.333-MHz crystal),
resulting in a minimum bus cycle time of 90 ns. Since the offset, pulse width, and recovery
parameters are each 8-bit values (maximum 255), the longest bus cycle in this case is 23
ps (28 0itS) x 30 ns * 3 registers).

Timing Requirements

The programmed timing of the chip select determines the overall length of the GP bus cycle.
Therefore, the timing parameters for the chip select must be appropriately programmed.
This is required even if the external device does not require a connection to the GPCSx pin.

m To ensure that the command strobes (read or write) assert for the programmed time,
the programmed Offset + Pulse Width + Recovery of the chip select must be programmed
to be longer than the programmed Offset + Pulse Width of the command strobes.

m Similarly, to ensure that GPALE is asserted for the programmed time, the programmed
Offset + Pulse Width + Recovery of the chip select must be programmed to be longer
than the programmed Offset + Pulse Width of the GPALE.

Figure 13-4 on page 13-8illustrates how the GP bus registers control this timing adjustment
for GP bus signals.

Elan™SC520 Microcontroller User’s Manual 13-7

AMDﬂ General-Purpose Bus Controller

Figure 13-4 GP Bus Timing Format

GPA25—GPAO (Address Valid)

GPCSx L -
@ GPCSOFF+1 GPCSPW + 1 GPCSRT + 1

GPMEMRD or GPIORD

\ /‘
- GPRDOFF + 1 >L GPRDW + l»

A
< GPWROFF +1 >[\< GPWRW + 1 4

GPALE
GPALEOFF + 1 GPALEW + 1

g -
Beginning of a bus cycle o Bus cycle duration

GPMEMWR or GPIOWR

Notes:
1. Timing parameter values are in units of one internal clock period.
2. Timing parameters in the diagram can be adjusted via the corresponding GP bus registers.

3. GPCSOFF + GPCSPW + GPCSRT must be greater than or equal to GPRDOFF + GPRDW,
GPWROFF + GPWRW, or GPALEOFF + GPALEW.

4. The GPCSOFF, GPCSPW, and GPCSRT registers affect all GPCSx signals equally.
5. The abbreviations in the figure refer to these GP bus registers:

Mnemonic Register
GPCSRT GP Chip Select Recovery Time
GPCSPW GP Chip Select Pulse Width
GPCSOFF GP Chip Select Offset
GPRDW GP Read Pulse Width
GPRDOFF GP Read Offset
GPWRW GP Write Pulse Width
GPWROFF GP Write Offset
GPALEW GP ALE Pulse Width
GPALEOFF GP ALE Offset

13.5.1.2 Using GPRDY with Programmable Timing

If the GPRDY signal is used, the bus cycle can be extended as long as required by the
peripheral. GPRDY cannot be used to terminate any bus cycle earlier than programmed.
More detailed information is provided in “Wait States” on page 13-20.

13.5.1.3 Using GP Bus Echo Mode with Programmable Timing

While GP bus echo mode is enabled, the system designer needs to ensure that the GP
bus timing is not faster than that shown in Table 13-3. The minimum GP bus timing register
values during the GP bus echo mode are shown in Table 13-3.

13-8 Elan™SC520 Microcontroller User’s Manual

General-Purpose Bus Controller AMD:'

Table 13-3

GP Bus Echo Mode Minimum Timing

GPCSPW, GPRDW,
GPCSOFF, GPRDOFF, GPALEW GPCSRT
GPALEOFF (Offset) (Pulse Width) (Recovery Time)

Signal Type Register Valuel Register Value! Register Value?
GP chip select 1 3 1

GP read 1 3

GP write 1 3 —
GPALE 0 0

Notes:
1. The actual time value is the register value plus 1. Times are in units of one internal clock period.

13.5.2

13.5.3

13.5.4

1/0-Mapped and Memory-Mapped Device Support

The GP bus controller supports any combination of 8-bit and 16-bit I/O and memory-mapped
external devices.

m [fthe external device is an I/O-mapped device, GPIORD and GPIOWR are used to strobe
the read and write accesses.

m [f the external device is a memory-mapped device, GPMEMRD and GPMEMWR are
used to strobe the read and write accesses.

To program I/O or memory-mapped address regions, see Chapter 4, “System Address
Mapping”, and the examples in “External GP Bus Devices” on page 3-13.

Chip Select Qualification

All GP bus chip selects can be qualified with the command strobes, GPIORD, GPIOWR,
GPMEMRD, or GPMEMWR, by programming the GP Chip Select Qualification
(GPCSQUAL) register (MMCR offset C02h) and the Programmable Address Region (PAR)
registers for memory or I/O device selection.

When chip select qualification is enabled, the internal chip selects are logically ANDed with
one (or both) of these command strobes. If a single command is chosen for qualification,
the corresponding chip select is not asserted for accesses of the other type. For example,
if GPMEMWR is used to exclusively qualify a chip select, that chip select is not asserted
for memory read accesses.

In a typical system environment, the command strobes are usually shorter than the chip
selects, and, in such cases, the external chip selects have timing that is identical to the
command strobes. Note that if the chip selects are internally qualified by commands, the
timing relationships between the command and chip select assertion/deassertion cannot
be guaranteed externally. For example, the chip select deassertion may lead the command
deassertion.

The qualification feature is useful for interfacing with buffer chips and transceivers without
requiring external gates or logic.

Data Sizing and Unaligned Accesses

The GP bus controller always operates in either 8-bit or 16-bit sizes. If the Am5,86 CPU
requests a 32-bit access from an 8-bit device or 16-bit device, the GP bus controller
responds to the Am5,86 CPU with bs8, indicating 8-bit data width, or bs16, indicating 16-
bit data width, depending on the programming of the GP Chip Select Data Width (GPCSDW)

Elan™SC520 Microcontroller User’s Manual 13-9

AMDZ\

General-Purpose Bus Controller

13.5.5

13.5.6

register (MMCR offset CO1h) and the state of the GPIOCS16 and GPMEMCS16 signals.
The Am5,86 CPU then generates multiple 8-bit or 16-bit bus cycles until all 32-bit data is
accessed; thus, the size is transparent to software. This is true for read accesses and write
accesses.

If the GP Chip Select Data Width (GPCSDW) register is programmed for 8-bit data width,
assertion of external GPIOCS16 (during an I/O access) or GPMEMCS16 (during a memory
access) overrides the data width specified in the GP Chip Select Data Width (GPCSDW)
register, as discussed on page 13-19.

Unaligned address accesses (addresses that are not on the 16-bit address boundary) are
supported through the Am5,86 CPU. The Am5,86 CPU breaks an unaligned address bus
cycle into multiple bus cycles with appropriate byte enable signals (be3-be0). The GP bus
controller simply takes one Am5,86 CPU bus cycle at a time and generates one external
bus cycle at a time.

Sharing the Address and Data Bus with the ROM/Flash Controller

A ROM device’s data bus can be connected to either the GP bus data bus or the SDRAM
data bus.

m When a ROM device is connected to the GP data bus, the ROM access shares both
GPD15-GPD0 and GPA25-GPAO with the GP bus.

m When a ROM device is connected to the SDRAM data bus, the ROM access shares
only GPA25—-GPAO with the GP bus.

This does not cause bus contention, because only the Am5,86 CPU can initiate an access
to either ROM or to the GP bus. Since the Am5,86 CPU can perform an access to only one
controller at a time, no conflict is possible.

Note that the GP bus DMA controller can initiate an access on the GP bus. Since the GP
bus DMA controller must already own the Am5,86 CPU’s bus before it can initiate an access,
once again, there can be no conflict between bus cycles initiated by the GP bus DMA
controller and ROM cycles initiated by the Am5,86 CPU.

Note that the ROM devices are cacheable, but GP bus devices are noncacheable. This is
because the ROM controller supports cacheability and has its own independent control
signals (chip selects, read strobe, and write strobe).

GP Bus Echo Mode

In normal operation, the integrated peripheral accesses are not visible on the external pins.
GP bus echo mode is provided to view accesses to the internal GP bus peripherals on the
external pins. This feature aids in debugging system software and boot code. This applies
to the integrated peripherals only (timers, GP-DMA controller, UARTSs, SSI, RTC, etc.) and
not to the memory or PCI bus controllers.

Accesses to internal peripherals that are “echoed” out utilize the programmable timing set
to ensure that there is no timing conflict with other external peripherals. Typically, internal
peripheral bus accesses are faster than external peripherals. Therefore, when using GP
bus echo mode to debug the system, be aware that accesses to the integrated peripherals
may be occurring at slower speeds to ensure compatibility with external devices, thus
resulting in a slower system performance.

When GP bus echo mode is enabled, GPAEN is driven high during accesses from the
Amb5,86 CPU to internal peripherals to prevent external devices from decoding (or
responding to) these internal peripheral accesses. In normal operation (GP bus echo mode
disabled), the GP bus controller never asserts GPAEN.

13-10

Elan™SC520 Microcontroller User’s Manual

General-Purpose Bus Controller AMD:'

13.5.7

13.5.8
13.5.8.1

Note that accesses initiated by the GP bus DMA controller are not affected by enabling the
GP bus echo mode, and therefore the GP bus DMA controller still asserts GPAEN as it
does during normal operation.During an internal GPDMA access in GP bus echo mode,
the external GP bus commands, GPIORD, GPMEMRD, GPIOWR, GPMEMWR, are not
asserted. However, GPAEN is still asserted.

While GP bus echo mode is enabled, there are additional restrictions to the programmable
timing parameters that must be taken into account. These are described in “Using GP Bus
Echo Mode with Programmable Timing” on page 13-8.

DMA Interface

There are four DMA channels for external GP bus peripherals. The GPDRQ3-GPDRQO
signals go directly to the GP-DMA controller, and their levels are programmable in the GP-
DMA controller. All GP-DMA control signals and timing are generated by the GP-DMA
controller, and the programmable timing in the GP bus controller does not affect the GP-
DMA cycle timing. For more information, see Chapter 14, “GP Bus DMA Controller”.

Usage Scenarios

Compatibility with Common ISA Devices

The GP bus is compatible with most ISA devices, but the following ISA bus features are not
supported.

m LA23-LA17 is supported through GPA23—-GPA17, but note that because the Am5,86
CPU itself does not support address pipelining, address pipelining is not supported on
the GP bus.

m GPA25-GPA24is added to increase the GP bus address space up to 64 Mbytes, instead
of 16 Mbytes.

m External master access is not supported, and the ElanSC520 microcontroller is always
the master on the GP bus (external masters can be accommodated by the PCI bus).

m GPIOCS16 and GPMEMCS16 do not cause the GP bus timings to change for the bus
cycles during which these signals are asserted.

m |OCHRDY is supported via the GPRDY pin only as an input for the slave devices that
require wait states. GPRDY as an output is not supported, since there is no external
master support.

m |OCHKis notsupported, buta GPIRQx signal (mappable to a maskable or non-maskable
interrupt) can be used to report errors.

m The REFRESH pin is not supported, because the SDRAM refresh is not echoed out to
the GP bus.

m NOWS is not supported, due to the programmable interface timing on the GP bus.

m BCLK and OSC are not supported, because a typical ISA interface is asynchronous.
External oscillators can be used, if needed.

m The GP bus provides programmable bus interface timing that can be configured to
support most ISA bus devices. However, the GP bus does not support all legacy ISA
timing. See the Elan™SC520 Microcontroller Data Sheet, order #22003, for information
on the GP bus and GP-DMA timing supported by the ElanSC520 microcontroller.

Table 13-4 shows the cross-reference table of the ISA signals and the GP bus signals.

Elan™SC520 Microcontroller User’s Manual 13-11

AMDﬂ General-Purpose Bus Controller

Table 13-4 Cross-Reference Table of ISA Signals and GP Bus Signals1

ISA Signal Name GP Bus Signal Name
AEN GPAEN

BALE GPALE

BCLK (Not Supported)
DACK GPDACK

DRQ GPDRQ
IOCHK Supported through GPIRQ
IOCHRDY GPRDY
10CS16 GPIOCS16
IOR GPIORD

10w GPIOWR

IRQ GPIRQ
LA23-LALl7 GPA23-GPA17
MASTER (Not Supported)
MEMCS16 GPMEMCS16
MEMR GPMEMRD
MEMW GPMEMWR
0osC (Not Supported)
REFRESH (Not Supported)
RSTDRV GPRESET
SA19-SA0 GPA19-GPAO
SBHE GPBHE
SD15-SDO0 GPD15-GPDO
TC GPTC

(Not Supported) GPA25-GPA24
Notes:

1. This table does not imply that the ElanSC520 microcontroller is fully
compliant with all ISA timing specifications. See the Elan™SC520 Mi-
crocontroller Data Sheet, order #22003, for information on the GP bus
and GP-DMA timing supported by the ElanSC520 microcontroller.

13-12 Elan™SC520 Microcontroller User’s Manual

AMDA

General-Purpose Bus Controller

13.5.8.2 Interfacing with a Super 1/0 Controller

Figure 13-5 shows an example system diagram of the ElanSC520 microcontroller

interfacing with a Super 1/0 controller. Figure 13-6 shows the interfacing timing example.

In this example, the programmable interface timing registers can be programmed as shown

in Table 13-5, using the equation from “Programmable Bus Interface Timing” on page 13-7:
Table 13-5 Example Super I/O Controller Interface Timing'

Pulse Recovery

Offset | Offset Chip Width Pulse Chip Time Recovery Chip
GP Bus Register | Time | Require- | Register | Width | Require- | Register Timer Require-
Signal Type | Value (ns) |ment(ns)| Value (ns) [ment(ns)| Value (ns) ment (ns)
GP chip 0 30 N/A 0 30 N/A 2 90 66
selects
GP read 0 30 19 60 60 N/A N/A N/A
GP write 30 19 60 60 N/A N/A N/A
GPALE 0 30 N/A 30 N/A N/A N/A N/A
Notes:

1. This example assumes that a 33.333-MHZz crystal is being used in the system.

Note that the bus cycle can be stretched out by deasserting GPRDY; see “Wait States” on
page 13-20 for more information.

Figure 13-5 Elan™SC520 Microcontroller Interfacing with a Super 1/0 Controller

GPA10-GPAO B SA10-SAO
GPD7-GPD0O -«—— SD7-SD0
GPIORD - |ORJ
GPIOWR p IOWJ
GPRDY —-= IOCHRDY
GPAEN = AEN
. DRQ3J-
™ i GPDRQx -
Elan™SC520 Microcontroller DRQ1J Super /O
DACK3J-
GPDACKx | DACKL
GPTC p TC
IRQ7-3
GPIRQx —=t IRO11-9
GPRESET > MR

Elan™SC520 Microcontroller User’s Manual 13-13

AMDﬂ General-Purpose Bus Controller

Figure 13-6 Timing Diagram of a Super 1/0O Interface

GPA10-GPAO | K Address Valid |
GPCSx* \ |
30 ns 30 ns 90 ns+
-« > - ns >
GPIORD? /
30 ns
60 ns+
<> ns >
GPIOWR**
30ns 60 ns+
P L
GPALE /
(Not needed) 30 ns 30 ns
|
GPRDY
Trdy
GPD7-GPDO X Read Data Y
30 ns
g
GPD7-GPDO Write Data
Beginning of a bus cycle J - 120 ns >

Notes:

1. Although the chip selects are not used, the recovery time needs to be programmed.

2. GPIORD, GPIOWR, and the chip select recovery time are delayed when the GPRDY signal is deasserted.
3. This example assumes that a 33.333-MHz crystal is being used in the system.

13.5.8.3 Interfacing with an AMD Enhanced Serial Communications Controller (8 MHz)

This slow version is depicted to illustrate an example of how the programmable timing can
be used to function with various timing requirements. Figure 13-7 shows an example system
diagram of the ElanSC520 microcontroller interfacing with an Am85C30 Enhanced Serial
Communications controller. Table 13-6 and Figure 13-8 show the interfacing timing
example. In this example, the programmable interface timing registers can be programmed
using the equation from “Programmable Bus Interface Timing” on page 13-7.

13-14 Elan™SC520 Microcontroller User’s Manual

General-Purpose Bus Controller

AMDA

Table 13-6 Example AMD Enhanced Serial Communications Controller Interface Timing1
Pulse Recovery
Offset | Offset Chip Width | Pulse Chip Time Recovery Chip
GP Bus Register | Time | Require- | Register [Width | Require- | Register Timer Require-
Signal Type | Value (ns) | ment(ns)| Value (ns) [ment (ns) Value (ns) ment (ns)
GP chip 2 90 0 4 150 150 0 30 35
selects
GP read 90 70 4 150 150 N/A N/A N/A
GP write a0 70 150 150 N/A N/A N/A
GPALE 30 N/A 0 30 N/A N/A N/A N/A
Notes:
1. This example assumes that a 33.333-MHz crystal is being used in the system.
Figure 13-7 Elan™SC520 Microcontroller Interfacing with an Am85C30
GPA1 > A/B
GPAO » D/C
GPD7-GPD0O —-= p D7-DO0
GPIORD p» RD
GPIOWR » WR
GPCSx p CE
Elan™SC520 Microcontroller Am85C30
GPIRQx -t INT
Elan™SC520 Microcontroller User's Manual 13-15

AMDﬂ General-Purpose Bus Controller

Figure 13-8 Timing Diagram of an Am85C30 Interface

GPAL-GPAO | (Address Valid |
GPCSx
90 ns 30 ns
< >l 150 ns >
GPIORD
90 ns
< > 150 ns >
GPIOWR
90 ns
- -t -
GPALE
(Not needed) 30 ns 30ns
-—P
GPD7-GPDO X Read Data ><:
GPD7—GPDO Write Data
inni /‘ 270 ns
Beginning of a bus cycle < >

Notes:
1. This example assumes that a 33.333-MHz crystal is being used in the system.

13.5.9 Bus Cycles
13.5.9.1 8-Bit Data Access of an 8-Bit 1/0 Device

During an 8-bit access to 8-bit I/O devices, GPD7-GPDO is used to transfer data between
the CPU and external devices. For an 8-bit memory-mapped I/O device, GPMEMWR and
GPMEMRD are used instead of GPIOWR and GPIORD.

Figure 13-9 shows the timing diagram of an 8-bit device access of an 8-bit I/O device.

Figure 13-9 8-Bit Data Access of an 8-Bit 1/O Device

GPA25-GPAO, | \)
GPBHE

GPCSx \ /

GPMEMRD, GPMEMWR, \ /—
GPIORD, or GPIOWR

GPD7-GPDO { Read Data)

GPD7-GPDO (Write Data }

13-16 Elan™SC520 Microcontroller User’s Manual

General-Purpose Bus Controller AMD:'

13.5.9.2

16-Bit Data Access of a 16-Bit 1/O Device

A 16-bit data read/write access to 16-bit I/O devices are similar to the 8-bit I/O device
accesses. In 16-bit accesses, all 16 bits of GPD are used. For memory-mapped I/O
accesses, GPMEMRD and GPMEMWR are used instead of GPIORD and GPIOWR.

Figure 13-10 shows the timing diagram of 16-bit accesses of a 16-bit I/O device.

Figure 13-10 16-Bit Data Access of a 16-Bit 1/0 Device

GPA25-GPAO, ‘()

GPBHE

GPCSx \ [

GPMEMRD, GPMEMWR

GPIORD, or GPIOWR \ /

GPD15-GPDO (ReadData |

/

GPD15-GPDO (Write Data J

13.5.9.3

16-Bit Data Access of an 8-Bit 1/0 Device

A 16-bit data access of an 8-bit I/O device requires two consecutive 8-bit data accesses of
the 1/0 device, but the consecutive 8-bit data accesses are resolved by the Am5,86 CPU
transparent to software. For memory-mapped I/O accesses, GPMEMRD and GPMEMWR
are used instead of GPIORD and GPIOWR. When the Am5,86 CPU requests a 16-bit data
access, the GP bus controller responds to the Am5,86 CPU with the bs8 signal, indicating
that the data width of the device is only 8 bits. The Am5,86 CPU then generates two
consecutive 8-bit bus cycles, and the 16-bit data access becomes two separate 8-bit data
GP bus cycles. Figure 13-11 shows the timing diagram of a 16-bit access of an 8-bit I/O
device.

Figure 13-11

16-Bit Data Access of an 8-Bit 1/0 Device

GPA25-GPAO, (xxoh
GPBHE
GPCSx | A O A
GPMEMRD, GPMEMWR,
GPIORD, or GPIOWR \—/—\—/—
GPD7-GPDO 1st 2nd
(for read)
GPD7-GPDO 1st 2nd

(for write)

Elan™SC520 Microcontroller User’s Manual 13-17

AMDﬂ General-Purpose Bus Controller

13.5.9.4 32-Bit Data Access of an 8-Bit 1/0 Device

A 32-bit data access of an 8-bit I/0 device requires four consecutive 8-bit data accesses
of the 8-bit I/0O device, but the consecutive 8-bit data accesses are resolved by the Am5, 86
CPU transparent to software. For memory-mapped 1/O accesses, GPMEMRD and
GPMEMWR are used instead of GPIORD and GPIOWR. When the Am5,86 CPU requests
a 32-bit data access, the GP bus controller responds to the Am5,86 CPU with the bs8
signal, indicating that data width of the device is only 8 bits. The Am5,86 CPU then
generates four consecutive 8-bit bus cycles, and the 32-bit data access becomes four
separate 8-bit data GP bus cycles. Figure 13-12 shows the timing diagram of a 32-bit access
of an 8-bit 1/0 device.

Figure 13-12 32-Bit Data Access of an 8-Bit 1/0 Device

GPA25-GPAO, (xxonh W xxth 0 xxen)

GPBHE

eresx N\ [\ [\ [

GPMEMRD, GPMEMWR,

GPIORD, or GPIOWR \ / \ / \ / \ /

O for reat (st) (2nd) 310 (am)
or real

GPD(ZC;GVL'}ES) 3rd
13.5.9.5 32-Bit Data Access of a 16-Bit 1/0 Device

A 32-bit data access of a 16-bit I/O device requires two consecutive 16-bit accesses of the
device, but the consecutive 16-bit data accesses are resolved by the Am5,86 CPU
transparent to software. For memory-mapped I/O accesses, GPMEMRD and GPMEMWR
are used instead of GPIORD and GPIOWR.

When the Am5,86 CPU requests a 32-bit data access, the GP bus controller responds to
the Am5,86 CPU with the bs16 signal, indicating that the data width of the device is only
16 bits. The Am5,86 CPU then generates two consecutive 16-bit bus cycles, and the 32-
bit data access becomes two separate 16-bit cycles on the GP bus.

Figure 13-13 shows the timing diagram of a 32-bit access of a 16-bit I/O device.

Figure 13-13 32-Bit Data Access of a 16-Bit 1/0 Device

GPA25-GPAO, (x.x0h)
GPBHE
GPCSx [S W A
GPMEMRD, GPMEMWR, N e VY A—
GPIORD, or GPIOWR
GPD15-GPDO {1st } 2nd
(for read)
GPD15-GPDO 1st 2nd

(for write)

13-18 Elan™SC520 Microcontroller User’s Manual

General-Purpose Bus Controller AMD:'

13.5.9.6 8-Bit Data Access of a 16-Bit 1/0 Device

The GPAO and GPBHE signals are required to determine which byte of a 16-bit peripheral
is accessed during byte read or write cycles. Table 13-7 describes how to determine which
byte is accessed.

Table 13-7 Differentiating Upper/Lower Byte Access of 16-Bit Devices

GPBHE GPAO Cycle Description
0 0 16-bit access of 16-bit device
0 1 Upper byte access of 16-bit device
1 0 Lower byte access of either 8-bit or 16-bit device
1 1 Upper byte access of 8-bit device

For memory-mapped I/O accesses, GPMEMRD and GPMEMWR are used instead of
GPIORD and GPIOWR.

Figure 13-14 shows the timing diagram of an 8-bit access of a 16-bit I/O device.

Figure 13-14 8-Bit Data Access of a 16-Bit 1/O Device

GPA25-GPAO | 4 x..x0h { x.xih X
Low Byte i High Byte
GPBHE al /
|
GPCSx \ — T
|
GPMEMRD, GPMEMWR, |
GPIORD, or GPIOWR S
|
GPD15-GPDO Read Data Read Data
GPD15-GPDO (Write Data { Write Data)

13.5.9.7 GPIOCS16 and GPMEMCS16 Timing
The GP bus controller provides two methods for defining the data bus width.

m The GP Chip Select Data Width (GPCSDW) register (MMCR offset C01h) allows each
chip select to be individually programmed for 8-bit or 16-bit data bus width.

m The GP bus controller also supports dynamic bus sizing through the GPIOCS16 and
GPMEMCS16 pins. These pins can be used to override the programming of the data
width for the current access, as described in Table 13-8.

— The GPIOCS16 and GPMEMCS16 pins can be asserted after the address or chip
select is valid and deasserted after the address or chip select invalid.

— If one of these pins is asserted by the external devices, the GP bus controller asserts
bs16 to the Am5,86 CPU.

— Assertion of these signals does not affect the programmable interface timing.

Elan™SC520 Microcontroller User’s Manual 13-19

AMDZ\

General-Purpose Bus Controller

The latest assertion time for these two signals is the same as the timing for the GPRDY
deassertion time (see “GPRDY Recognition” on page 13-20).

Table 13-8

Dynamic Bus Sizing Override of Programmed Data Width

GP Chip Select Data Width GPIOCS16
(GPCSDW) Register Setting GPMEMCS16 Assertion | Resultant Bus Size

8-bit Deasserted 8-bit

8-bit Asserted 16-bit
16-bit Deasserted 16-bit
16-bit Asserted 16-bit

Figure 13-15 shows the GPIOCS16 timing for a 16-bit access and an 8-bit access.

Figure 13-15 16-Bit Access of a 16-Bit 1/0 Device

GPA23-GPAO, (Addr
GPBHE ‘
GPCSx \
GPIOCS16 \
GPMEMRD, GPMEMWR,
GPIORD, or GPIOWR |
GPD15-GPDO
GPD15-GPDO { Write Data)
13.5.9.8 Wait States
The ElanSC520 microcontroller provides two ways to insert wait states in a GP bus cycle.
m The user can program the programmable interface timing registers to delay the timing
of GPIORD, GPMEMRD, GPIOWR, or GPMEMWR for the required number of wait state
cycles.
m GPRDY can also be used to insert wait states dynamically on a cycle basis.
GPRDY can only be used to stretch GP bus cycles; it cannot be used to provide early
termination of the cycle. The control signals are always asserted for a minimum of the entire
period, as programmed in the timing control registers. Then, the additional delay can be
inserted by the deassertion of GPRDY.
Figure 13-16 shows the timing of GPRDY.
13.5.9.8.1 GPRDY Recognition

Assuming a 33.333-MHz crystal, the GPRDY pin must be deasserted a minimum of 45 ns
before the programmed deassertion of the command strobes and must have a minimum
deassertion (Low) width of 30 ns to insert a wait state into a GP bus cycle. Additional wait
states are inserted by extending the time in which the GPRDY pin is held deasserted. The

13-20

Elan™SC520 Microcontroller User’s Manual

General-Purpose Bus Controller AMD:'

command strobes will be deasserted after the GPRDY signal is internally synchronized and
sampled asserted by the 33-MHz clock and after the programmed pulse width value for the
strobe has expired.

Figure 13-16 GPRDY Timing

GPA25-GPAO ({ Address

GPMEMRD, GPMEMWR,

GPIORD, or GPIOWR \

[
|
|
GPCSx \ | /
|
i

GPRDY |
Notes: v

The programmable timing would cause the
cycle to end here, but the GPRDY
deassertion stretches the cycle further.
GPRDY assertion then allows the cycle to
continue.

GPD15-GPDO (ReadData |

GPD15-GPDO (Write Data —

13.5.10

13.5.11
13.5.11.1

13.5.11.2

13.5.11.3

Interrupts

External devices that assert interrupts use the GPIRQ10-GPIRQO signals for this purpose.
The GPIRQx interrupt signals bypass the GP bus controller and are routed to the
programmable interrupt controller (PIC). See Chapter 15, “Programmable Interrupt
Controller”, for more information.

Latency
8/16-Bit GP Bus Width

Due to the smaller data width of the GP bus, 32-bit accesses from the Am5,86 CPU are
broken up into separate 8-bit or 16-bit GP bus cycles. During this time, no other Am5,86
CPU bus cycle can be generated, and neither the GP-DMA or an external PCI bus master
can access SDRAM.

Slow GP Bus Cycles

If the interface timing is programmed to have slow GP bus cycles or if GPRDY is used to
stretch cycles for long periods of time, the system performance can be affected because
the CPU bus is monopolized.

Note: Very long GP bus cycles can cause the PCI host bridge target controller to violate
the 10 us memory write maximum completion time limit set in the PCI Local Bus
Specification, Revision 2.2. In PCl bus 2.2-compliant designs, software must limit the length
of GP bus cycles and GP-DMA demand- or block-mode transfers.

Noncacheable GP Bus

All GP bus accesses are noncacheable. Therefore, code execution out of this bus is not
recommended.

Elan™SC520 Microcontroller User’s Manual 13-21

AMDZ\

General-Purpose Bus Controller

13.6

INITIALIZATION

The GP bus controller is reset by a system reset. The internal GP bus is enabled, as are
holes in the lower 1-Kbyte of I/O space; however, no chip selects are enabled. The external
GP bus is disabled until the Programmable Address Region (PAR) registers are initialized.

GP bus reset can be generated via a system reset or software write. Writing a 1 to the
GP_RST bit in the Reset Configuration (RESCFG) register (MMCR offset D72h) asserts
the GPRESET pin. Clearing this bit to 0 deasserts the GPRESET pin. The GPRESET pin
is only used for external GP bus peripherals. When this signal is asserted, all devices
connected to the GP bus should re-initialize to their reset state.

To enable the GP bus controller:

1. Configure the address decoding region for each chip select in the PAR registers.

2. Configure the external chip select pins in the Chip Select Pin Function Select (CSPFS)
register (MMCR offset C24h).

3. Configure the external GP bus timing in the programmable interface timing registers, as
described in this chapter.

4. Configure the data width of each chip select in the GP Chip Select Data Width
(GPCSDW) register (MMCR offset CO1h).

5. Optionally, program the GP Chip Select Qualification (GPCSQUAL) register (MMCR
offset C02h) to qualify the chip select with the read or write strobes, if needed.

6. Optionally, program the GP Echo Mode (GPECHO) register (MMCR offset CO0h) to
enable the GP bus echo mode, if needed.

13-22

Elan™SC520 Microcontroller User’s Manual

AMD X\

14 GP BUS DMA CONTROLLER

14.1

14.2

OVERVIEW

The ElanSC520 microcontroller includes an integrated GP bus DMA (GP-DMA) controller.
The GP-DMA controller is designed to transfer data between external GP bus peripherals
and SDRAM. Transfers between the internal UART serial ports and SDRAM are also
supported. Throughout this document, the term GP-DMA refers to a DMA transaction on
the GP bus.

Features of the GP bus DMA controller include:

m Fly-by transfers between GP bus peripherals and SDRAM

m Support for up to seven DMA request channels (with a maximum of four external
requests)

m Two internal UART serial ports can initiate GP-DMA transfers
m GP-DMA controller can address all of the system SDRAM
m In enhanced GP-DMA mode:
— Four channels are individually configurable for either 8 or 16 bits.
— Maximum transfer count is 16 M (16,777,216) transfers (using 24-bit count register).
— Channel widths default to PC/AT-compatible mode (three 16-bit, and four 8-bit).
— Buffer chaining capability
m Variable clock modes: 4, 8, and 16 MHz

m Transfers to and from SDRAM only. No transfers are possible to PCI, ROM, or peer GP
bus devices when using the GP-DMA controller.

Note: The GP bus DMA controller is capable of supporting most ISA DMA applications
and devices. However, not all ofthe legacy ISA timings are supported. See the Elan ™SC520
Microcontroller Data Sheet, order #22003, for information on the GP bus and GP-DMA
timing supported by the ElanSC520 microcontroller.

BLOCK DIAGRAM

The GP-DMA controller consists of two DMA cores: the slave core and the master core.
m The slave core has four 8-bit channels by default: 0, 1, 2, and 3.

m The master core has three 16-bit channels by default: 5, 6, and 7.

m Channel 4 must be programmed to cascade mode and must be unmasked if any of the
8-bit channels 0-3 are to be used.

m Inenhanced GP-DMA mode, Channels 3,5, 6, and 7 are programmable to support either
8-bit or 16-bit mode.

Figure 14-1 shows a block diagram of the GP-DMA controller. Figure 14-2 shows how the
master and slave cores are connected.

Elan™SC520 Microcontroller User’s Manual 14-1

AMDZ\

GP Bus DMA Controller

Figure 14-1

GP-DMA Controller Block Diagram

Elan™SC520 Microcontroller

GP-DMA Controller

GPDRQ3-GPDRQO
> L txdrg[1-0]
; rxdrg[1-0]
txdack[1-0] /| UARTs
rxdack[1-0] _
L
_>
GPA25_GPAO __
) . Channel dior
< GPD15_GPDO Configuration . > Jiow
Registers | Mapping dmemr GP Bus
Initiator | CP BUS dmemw >
» (I/0) /0 GPTC* >
Control GPAEN* >
GPDACK3—-GPDACKO* >
*Multiplexed pins
dack7—dack5 | _1p
drq7—-drg5 | €4—
- dma_is_16
Master Core dramrd
Bus
Target dramwr
Slave Core (SDRAM) Interface
dack3—dacko | — Control daddr[27—0]‘ Unit
Ll
< breq R
drg3—drq0 | — > bgnt
addr[27-0]
14-2 Elan™SC520 Microcontroller User's Manual

GP Bus DMA Controller AMDZ\

Figure 14-2 Master and Slave Core Cascading Diagram

GP data ADDR[15-0] HRQ ——p»breq
P DATA[7-0] HLDA g __ bgnt
dmaO_cs -
ADDR[15:0] —
Master Core P
gpdrg?
— B DR
- gpdack? WC?K Channel 7
gpdrg6 » DRQ
- gpdacké6 DACK Channel 6
gpdrg5
== p DRQ
- gpdackbs mChanneIS
— » DRQ h 14 Interconnect daddri27—-0
DAk channe Logic 270
4l>o— dlior .
diow >
HRQ dmemr >
dmal_cs DR HLDA ¢ dmenmr |
B > CS ADDR[15-0] —P» dma_is 16
apdrg3 Slave Core — GPTC .
P DR
- gpdack3 W&Channels GPAEN >
gpdrg2
p DRQ
- gpdack?2 DACK Channel 2
gpdrgl
P DR
- gpdackl WC?K Channel 1
gpdrq0 DR
e > Q
- gpdack0 DACK Channel 0

1 4.3

SYSTEM DESIGN

Table 14-1 shows GP-DMA signals shared with other interfaces. When enabled, the

multiplexed signals shown in Table 14-1 either disable or alter any other function that uses
the same pin.

The GPDRQx and GPDACKX signals have programmable polarities. The default polarity
is compatible to the ISA convention.

Since the GP-DMA controller does not generate an interrupt at the end of the transfer,
system designers can externally connect GPTC to any GPIRQXx to trigger an interrupt. Note
that qualifying GPTC with a specific GPDACKXx signal provides a more specific interrupt.

For an application that requires a DMA transfer every fixed interval of time, a timer output
(TMROUT1 or TMROUTO) can be connected to the GPDRQXx pin.

See the Elan™SC520 Microcontroller Data Sheet, order #22003, for timing tables and
additional timing diagrams.

Elan™SC520 Microcontroller User’s Manual 14-3

AMDZ\

GP Bus DMA Controller

Table 14-1 GP-DMA Signals Shared with Other Interfaces
PIO
(Default) Interface
Signal Function Control Bit Register
P1012 GPDACKO PIO12_FNC P1015-PIO0 Pin Function Select
PIO10 GPDACK2 PIO10_FNC
P109 GPDACK3 PIO9_FNC
PIO8 GPDRQO PIO8_FNC
PIO7 GPDRQ1 PIO7_FNC
PIO6 GPDRQ2 PIO6_FNC
PIO5 GPDRQ3 PIO5_FNC
Pl1O4 GPTC PlO4_FNC
P103 GPAEN PIO3_FNC
14.4 REGISTERS
The GP bus DMA (GP-DMA) controller is configured using memory-mapped registers and
direct-mapped registers.
14.4.1 Memory-Mapped Registers
A summary listing of the MMCR registers used to configure the GP-DMA controller is shown
in Table 14-2. These registers provide functionality beyond the PC/AT compatibility, such
as the extended page registers, the features in the enhanced GP-DMA mode, and the ability
to route external GPDRQx and GPDACKX signals to a specific channel of the GP-DMA
controller.
Table 14-2 GP-DMA Controller Registers—Memory-Mapped
MMCR
Offset
Register Mnemonic Address | Function
P1015-PIO0 Pin Function PIOPFS15 0 C20h P1O or interface function select: GPDACK3-
Select GPDACKO0, GPDRQ3-GPDRQ3, GPTC,
GPAEN
DMA Buffer Chaining DMABCINTMAP D40h GP-DMA buffer chaining interrupt mapping
Interrupt Mapping
GP-DMA Control GPDMACTL D80h GP-DMA enhanced mode enable, channel
size, clock mode
GP-DMA Memory-Mapped GPDMAMMIO D81h I/0 or memory-mapped I/O channel
1/0 configuration
GP-DMA Resource Channel | GPDMAEXTCHMAPA | D82h Channel mapping for GPDRQ3-GPDRQO
Map A
GP-DMA Resource Channel | GPDMAEXTCHMAPB | D84h Channel mapping for internal serial port
Map B GP-DMA requests
GP-DMA Channel 0 GPDMAEXTPGO D86h Bits 27—24 of the memory address for
Extended Page Channel 0

14-4

Elan™SC520 Microcontroller User’s Manual

GP Bus DMA Controller

AMDA

Table 14-2 GP-DMA Controller Registers—Memory-Mapped (Continued)
MMCR
Offset
Register Mnemonic Address | Function
GP-DMA Channel 1 GPDMAEXTPG1 D87h Bits 27—24 of the memory address for
Extended Page Channel 1
GP-DMA Channel 2 GPDMAEXTPG2 D88h Bits 27-24 of the memory address for
Extended Page Channel 2
GP-DMA Channel 3 GPDMAEXTPG3 D89h Bits 27-24 of the memory address for
Extended Page Channel 3
GP-DMA Channel 5 GPDMAEXTPG5 D8Ah Bits 27—24 of the memory address for
Extended Page Channel 5
GP-DMA Channel 6 GPDMAEXTPG6 D8Bh Bits 27—24 of the memory address for
Extended Page Channel 6
GP-DMA Channel 7 GPDMAEXTPG7 D8Ch Bits 27-24 of the memory address for
Extended Page Channel 7
GP-DMA Channel 3 GPDMAEXTTC3 D90h Bits 23-16 of Channel 3 transfer count value
Extended Transfer Count (enhanced GP-DMA mode)
GP-DMA Channel 5 GPDMAEXTTC5 D91h Bits 23-16 of Channel 5 transfer count value
Extended Transfer Count (enhanced GP-DMA mode)
GP-DMA Channel 6 GPDMAEXTTCS6 D92h Bits 23—-16 of Channel 6 transfer count value
Extended Transfer Count (enhanced GP-DMA mode)
GP-DMA Channel 7 GPDMAEXTTCY D93h Bits 23—-16 of Channel 7 transfer count value
Extended Transfer Count (enhanced GP-DMA mode)
Buffer Chaining Control GPDMABCCTL D98h Buffer chaining enables for channels 7, 6, 5,
and 3
Buffer Chaining Status GPDMABCSTA D9%h Buffer chaining status for channels 7, 6, 5, and
3
Buffer Chaining Interrupt GPDMABSINTENB D9Ah Buffer chaining interrupt enables for channels
Enable 7,6,5,and 3
Buffer Chaining Valid GPDMABCVAL D9Bh Valid buffer of the buffer chaining operation
GP-DMA Channel 3 Next GPDMANXTADDL3 DAOh Address bits 0—15 of the next data buffer in
Address Low memory used with Channel 3
(enhanced GP-DMA mode)
GP-DMA Channel 3 Next GPDMANXTADDH3 DA2h Address bits 16—27 of the next data buffer in
Address High memory used with Channel 3
(enhanced GP-DMA mode)
GP-DMA Channel 5 Next GPDMANXTADDLS DA4h Address bits 0—15 of the next data buffer in
Address Low memory used with Channel 5
(enhanced GP-DMA mode)
GP-DMA Channel 5 Next GPDMANXTADDH5 DA6h Address bits 1627 of the next data buffer in

Address High

memory used with Channel 5
(enhanced GP-DMA mode)

Elan™SC520 Microcontroller User’s Manual

14-5

AMDZ\

GP Bus DMA Controller

Table 14-2 GP-DMA Controller Registers—Memory-Mapped (Continued)
MMCR
Offset
Register Mnemonic Address | Function
GP-DMA Channel 6 Next GPDMANXTADDLG6 DA8h Address bits 0-15 of the next data buffer in
Address Low memory used with Channel 6
(enhanced GP-DMA mode)
GP-DMA Channel 6 Next GPDMANXTADDH6 DAAh Address bits 16-27 of the next data buffer in
Address High memory used with Channel 6
(enhanced GP-DMA mode)
GP-DMA Channel 7 Next GPDMANXTADDL7 DACh Address bits 0-15 of the next data buffer in
Address Low memory used with Channel 7
(enhanced GP-DMA mode)
GP-DMA Channel 7 Next GPDMANXTADDHY7 DAEh Address bits 16—27 of the next data buffer in
Address High memory used with Channel 7
(enhanced GP-DMA mode)
GP-DMA Channel 3 Next GPDMANXTTCL3 DBOh Bits 0—15 of the next transfer count for Channel
Transfer Count Low 3 when using buffer chaining
(enhanced GP-DMA mode)
GP-DMA Channel 3 Next GPDMANXTTCH3 DB2h Bits 16—23 of the next transfer count for
Transfer Count High Channel 3 when using buffer chaining
(enhanced GP-DMA mode)
GP-DMA Channel 5 Next GPDMANXTTCL5 DB4h Bits 0—15 of the next transfer count for Channel
Transfer Count Low 5 when using buffer chaining
(enhanced GP-DMA mode)
GP-DMA Channel 5 Next GPDMANXTTCH5 DB6h Bits 16—23 of the next transfer count for
Transfer Count High Channel 5 when using buffer chaining
(enhanced GP-DMA mode)
GP-DMA Channel 6 Next GPDMANXTTCL6 DB8h Bits 0—15 of the next transfer count for Channel
Transfer Count Low 6 when using buffer chaining
(enhanced GP-DMA mode)
GP-DMA Channel 6 Next GPDMANXTTCH®6 DBAh Bits 16—23 of the next transfer count for
Transfer Count High Channel 6 when using buffer chaining
(enhanced GP-DMA mode)
GP-DMA Channel 7 Next GPDMANXTTCL7 DBCh Bits 0—15 of the next transfer count for Channel
Transfer Count Low 7 when using buffer chaining
(enhanced GP-DMA mode)
GP-DMA Channel 7 Next GPDMANXTTCH7 DBEh Bits 16—23 of the next transfer count for
Transfer Count High Channel 7 when using buffer chaining
(enhanced GP-DMA mode)

14.4.2 Direct-Mapped Registers

There are seven DMA channels in the GP-DMA controller. Table 14-3 shows the direct-
mapped I/O registers that are available for each of the seven channels.

There are two DMA cores in the GP-DMA controller that are cascaded to provide the seven
DMA channels. The cores are referred to as master and slave. Table 14-3 includes the set
of the direct-mapped registers available in each of two cores. These registers program the
function of the master or slave core.

14-6 Elan™SC520 Microcontroller User’s Manual

GP Bus DMA Controller

AMDA

In addition to the registers used to control GP-DMA, there is a set of general-purpose
registers. These registers are decoded in the same chip select region with the page

registers.

Table 14-3 GP-DMA Controller Registers—Direct-Mapped
I/O

Register Mnemonic Address | Function

Registers for Each Channel

Channel 0 Memory Address GPDMAOMAR 0000h Memory address bits 15-0 during GP-DMA
Channel 1 Memory Address GPDMAIMAR 0002h transfers

Channel 2 Memory Address GPDMA2MAR 0004h

Channel 3 Memory Address GPDMA3MAR 0006h

Channel 4 Memory Address GPDMA4MAR 00COh

Channel 5 Memory Address GPDMA5MAR 00C4h

Channel 6 Memory Address GPDMAG6MAR 00C8h

Channel 7 Memory Address GPDMA7MAR 00CCh

Channel 0 Transfer Count GPDMAOQTC 0001h Bits 15-0 of the transfer count for the GP-
Channel 1 Transfer Count GPDMA1TC 0003h DMA transactions

Channel 2 Transfer Count GPDMA2TC 0005h

Channel 3 Transfer Count GPDMA3TC 0007h

Channel 4 Transfer Count GPDMAATC 00C2h

Channel 5 Transfer Count GPDMASTC 00C6h

Channel 6 Transfer Count GPDMAGTC 00CAh

Channel 7 Transfer Count GPDMATYTC 00CEh

Channel 2 Page GPDMA2PG 0081h Memory address bits 23-16 or 23-17
Channel 3 Page GPDMA3PG 0082h during GP-DMA transfers

Channel 1 Page GPDMA1PG 0083h

Channel 0 Page GPDMAOPG 0087h

Channel 6 Page GPDMAG6PG 0089h

Channel 7 Page GPDMA7PG 008Ah

Channel 5 Page GPDMA5SPG 008Bh

Registers for Each DMA Core (Master and Slave)

Master DMA Channel 4-7 Status | MSTDMASTA 00DOh GP-DMA request status and terminal count
Slave DMA Channel 0-3 Status | SLDMASTA 0008h condition for each channel.

Master DMA Channel 4-7 Control | MSTDMACTL 00DOh DMA controller enable, arbitration mode,
Slave DMA Channel 0-3 Control | SLDMACTL 0008h and timing control

Master Software DRQ(n) Request | MSTDMASWREQ 00D2h Software GP-DMA request initiated to a
Slave Software DRQ(n) Request | SLDMASWREQ 0009h specific channel

Master DMA Channel 4-7 Mask | MSTDMAMSK 00D4h GP-DMA channel mask

Slave DMA Channel 0-3 Mask SLDMAMSK 000Ah

Master DMA Channel 4-7 Mode | MSTLDMAMODE 00D6h Transfer mode, transfer type, automatic
Slave DMA Channel 0—3 Mode SLDMAMODE 000Bh initialization, and address increment mode

for each channel

Master DMA Clear Byte Pointer | MSTDMACBP 00D8h Pointer to which byte will be accessed inthe
Slave DMA Clear Byte Pointer SLDMACBP 000Ch 16-bit GP-DMA registers

Elan™SC520 Microcontroller User’s Manual

14-7

AMDA GP Bus DMA Controller

Table 14-3 GP-DMA Controller Registers—Direct-Mapped (Continued)

I/O
Register Mnemonic Address | Function
Master DMA Controller Reset MSTDMARST 00DAh GP-DMA controller reset
Slave DMA Controller Reset SLDMARST 000Dh
Master DMA Controller Temporary | MSTDMATMP 00DAh Preserves PC/AT compatibility
Slave DMA Controller Temporary | SLDMATMP 000Dh
Master DMA Mask Reset MSTDMAMSKRST | 00DCh Mask register reset to activate the
Slave DMA Mask Reset SLDMAMSKRST 000Eh associated GP-DMA channels
Master DMA General Mask MSTDMAGENMSK | 00DEh GP-DMA channel masks
Slave DMA General Mask SLDMAGENMSK 000Fh
General-Purpose Registers
General Registers GPDMAGRO 0080h, General-purpose R/W registers
GPDMAGR1 0084h—
GPDMAGR? 88222’
GPDMAGR3 008Ch—
GPDMAGRA4 008Fh
GPDMAGR5
GPDMAGR6
GPDMAGR7
GPDMAGRS8

14.5 OPERATION
The GP-DMA controller on the ElanSC520 microcontroller supports the following features.

m Only fly-by GP-DMA transfers are supported. A fly-by transfer is a transfer in which the
data is moved from an 1/0O device or a memory-mapped /O device to SDRAM (GP-DMA
write), or from SDRAM to an I/O device or a memory-mapped I/O device (GP-DMA read)
in a single transaction.

m Memory-to-memory (i.e., SDRAM-to-SDRAM) and 1/O-to-I/O (peer-to-peer on the GP
bus) transfers are not supported.

m Transfer modes supported: single, block, and demand
m Transfer types supported: read, write, and verify

14.5.1 GP-DMA Transfers

Because the ElanSC520 microcontroller also supports the standard PC/AT system
architecture, the method for DMA transfer complies with the Industry Standard Architecture
(ISA) specifications. The default polarities of GPDRQx and GPDACKX are active High and
Low respectively, but they can be programmed differently.

The following general rules apply to GP-DMA transfers on the ElanSC520 microcontroller:

m The GP-DMA initiatoris the 1/0O device that asserts GPDRQXx. This is always an external
I/O device (or memory -mapped I/O device) residing on the GP bus, or the internal UART
serial ports, and can be either 8 bits or 16 bits. Note that the internal UARTs must be
programmed as 8-bit channels.

m The GP-DMA targetis always system memory (SDRAM). Table 14-4 on page 14-9
shows the possible GP-DMA initiators and targets.

14-8 Elan™SC520 Microcontroller User’s Manual

GP Bus DMA Controller AMDZ\

m Since the GP-DMA target is always SDRAM, the relevant address range must be
currently mapped to be system SDRAM. If that portion of the address space is not
mapped to SDRAM, erroneous operation will result. See Chapter 4, “System Address
Mapping”, for more details on how to set up the system address mapping.

m ElanSC520 microcontroller does not support peer-to-peer transfers between GP bus
peripheral devices, or SDRAM-to-SDRAM.

m InPClbus 2.2-compliant designs, software mustlimit the length of GP bus DMA demand-
or block-mode transfers. Very large transfers could cause the PCI host bridge target
controller to violate the 10 us memory write maximum completion time limit set in the
PCI Local Bus Specification, Revision 2.2.

Table 14-4

14.5.1.1
14.5.1.1.1

14.5.1.1.2

Supported GP-DMA Initiator/Target Combinations

GP-DMA Initiator Channel Size GP-DMA Target
UARTSs 8 bits SDRAM
GP Bus 8 or 16 bits SDRAM

The GP-DMA controller provides the GPAEN signal to prevent other devices residing on
the same external GP bus from decoding the address on the GPA bus. When the internal
Transfer Count register rolls from Oh to FFFFh (FFFFFFh in enhanced GP-DMA mode),

GP-DMA controller asserts GPTC to indicate the end of transfer.

GP-DMA Initiators

Internal UARTs

Each of the two UART serial ports on the ElanSC520 microcontroller can initiate DMA
transfers from its transmit channel or receive channel, or both. Since the serial ports are
8-bit devices, their DMA requests can be mapped to any of the default 8-bit channels
(channels 0-3).

m Foraread transfer, the UART asserts its request from the transmit channel (txdrq), waits
for the acknowledge (txdack), and latches the data from the low byte of the GPD15—
GPDO bus when the I/O command is asserted (GPIOWR).

m For awrite transfer, the UART asserts its request from the receive channel (rxdrq), waits
for the acknowledge (rxdack), and places the data on the low byte of the GPD15-GPDO
bus when the I1/O command is asserted (GPIORD).

For the channel connected to the internal serial port, the drq sense level must be
programmed as active High, the dack sense level must be programmed as active Low, the
write mode must be programmed for late write using the WRTSEL bit, the timing mode
must be configured for normal timing using the COMPTIM bit. This is the default
configuration. These bits are found in the Slave and Master DMA Channel x Control
(SLDMACTL and MSTDMACTL) registers. Note that internal requests from the UART serial
ports cannot be mapped to a 16-bit channel, because the UARTSs support 8-bit data transfer
only.

External I/0O Devices

An external I/O device can use any of the channels, depending on its size. Each 1/O device
uses one dedicated GPDRQ/GPDACK signal pair.

m During a read transfer, the external I/O device asserts its request (GPDRQX), waits for
the acknowledge (GPDACKX), and latches the data from the GPD bus when the I/O
command is asserted (GPIOWR).

Elan™SC520 Microcontroller User’s Manual 14-9

AMDZ\

GP Bus DMA Controller

m Forawrite transfer, the external I/O device asserts its request, waits for the acknowledge,
and places the data on the GPD bus when the I1/O command (GPIORD) is asserted.

14.5.1.1.3 External Memory-Mapped I/O Devices
An external device on the GP bus can be mapped into memory address space. See
Chapter 4, “System Address Mapping”, for more details. Such devices are referred to as
memory-mapped I/O devices. GP-DMA transactions to a memory-mapped I/O device are
handled in the same fashion as those to an I/O device, except that the commands used
are GPMEMRD and GPMEMWR, instead of GPIORD and GPIOWR. The GP-DMA
Memory-Mapped I/O (GPDMAMMIO) register (MMCR offset D81h) is used for this purpose.
14.5.1.2 GP-DMA Channel Mapping
GP-DMA requests can originate from the following sources:
m Transmit and receive channels from each of two internal UART serial ports (always
8-bit) for a total of four requests
m GP bus using GPDRQ3-GPDRQO and GPDACK3-GPDACKO (8-bit or 16-bit).
Table 14-5 shows the ElanSC520 microcontroller resource and the GP-DMA channels to
which the resource can be mapped.
All GP-DMA channel mapping in the ElanSC520 microcontroller is programmable using
the two GP-DMA Resource Channel Map x (GPDMAEXTCHMAPX) registers.
Table 14-5 GP-DMA Channel Mapping
GP-DMA Channel
Microcontroller Resource 0 1 2 3 4 5 6 7
UART 1 transmit request O O O O
UART 2 receive request O O O O
UART 1 transmit request O O O O
UART 2 receive request O O O O
External request GPDRQO O O O O O O O
External request GPDRQ1 a g a g g a g
External request GPDRQ2 a g a g g a g
External request GPDRQ3 O O O O O O O
14.5.2 Operating Modes
The operating mode for the GP-DMA controller is configured using the ENH_MODE_ENB
bit in the GP-DMA Control (GPDMACTL) register (MMCR offset D80h).
14.5.2.1 Normal GP-DMA Mode

Normal GP-DMA mode is the default operating mode of the GP-DMA controller. In this
mode:

m Channels 0, 1, 2, and 3 are used for the internal UART serial ports and external 8-bit
devices.

m Channel 5, 6, and 7 are used for any external 16-bit devices.

This mode is compatible with the PC/AT architecture.

14-10

Elan™SC520 Microcontroller User’s Manual

GP Bus DMA Controller AMDZ\

14.5.2.2

14.5.3
14.5.3.1

14.5.3.1.1

14.5.3.1.2

Enhanced GP-DMA Mode

Only channels 3, 5, 6, and 7 support enhanced GP-DMA mode. In enhanced GP-DMA
mode:

m Each of these four channels can be configured to be either 8-bit or 16-bit channel. The
other channels (0, 1, and 2) can still be used as normal 8-bit channels in conjunction
with the enhanced GP-DMA mode channels.

m The transfer count registers are increased to 24 bits in size, to allow counts up to 16 M
(16,777,216) fransfers.

m The address adder is increased to 28 bits in size, eliminating the limitation of transferring
within the 64 Kbytes boundaries (128 Kbytes for 16-bit devices) in normal GP-DMA
mode.

This mode also offers the capability of chaining two noncontiguous memory buffers during
DMA transfers, as described in “Buffer Chaining” on page 14-15.

Addressing GP-DMA Channels
Addressing In Normal GP-DMA Mode

GP-DMA Channel 4 is used to cascade channels 0-3 from the slave core through the
master core to the CPU and is not available for data transfer. For proper operation, software
must ensure that this setting is always configured for cascading only via the TRNMOD field
in the Master DMA Channel 4—-7 Mode (MSTDMAMODE) register (Port 00D6h).

8-Bit Transfers

Channels 0-3 support 8-bit data transfers between 8-bit I/O devices and system SDRAM.
8-bit GP-DMA can access any location within the system address space; however, the
address adder is only 16 bits wide, so 8-bit GP-DMA requests cannot cross 64-Kbyte
physical page boundaries. As shown in Table 14-6, during an 8-bit GP-DMA transfer:

m The Slave DMA Channel x Memory Address (GPDMAXMAR) registers provide address
bits 15-0.

m The Slave DMA Channel x Page (GPDMAXPG) registers provide address bits 23-16.

m The GP-DMA Channel x Extended Page (GPDMAEXTPGX) registers provide bits
27-24 of the system memory address.

16-Bit Transfers

Channels 5-7 support 16-bit data transfers between 16-bit I/0O devices and system SDRAM.
16-bit GP-DMA can access any even (word-aligned) location within the system address
space; however, the address adder is only 16 bits wide, so 16-bit GP-DMA requests cannot
cross 128-Kbyte physical page boundaries. During a 16-bit GP-DMA transfers:

m AOis forced to O.

m The Master DMA Channel x Memory Address (GPDMAXMAR) registers provide address
bits 16-1.

m The Master DMA Channel x Page (GPDMAXPG) registers provide address bits 23-17.

m The GP-DMA Channel x Extended Page (GPDMAEXTPGX) registers provide bits
27-24 of the system memory address.

Elan™SC520 Microcontroller User’s Manual 14-11

AMDZ\

GP Bus DMA Controller

Table 14-6

8-Bit GP-DMA Channel Address Generation

Source

GP-DMA Channel x Slave DMA Channel x Slave DMA Channel x
Extended Page Registers | Page Registers Memory Address Register

Address

A27-A24 A23-A16 A15-A0

Table 14-7

16-Bit GP-DMA Channel Address Generation

Source

GP-DMA Channel x Master DMA Channel x Master DMA Channel x
Extended Page Registers | Page Registers Memory Address Register

Address

A27-A24 A23-A17 Al6-Al1, AO=0

14.5.3.2

14.5.4

14.5.4.1

14.5.4.2

Addressing In Enhanced GP-DMA Mode

In enhanced GP-DMA mode, channels 3, 5, 6 and 7 are programmable to support either
8-bit transfers or 16-bit transfers.

m When the channel is configured to be 8-bit, the address is generated as shown in
Table 14-6.

m When the channel is configured to be 16-bit, the address is generated as shown in
Table 14-7.

m However, when the buffer chaining feature is used, the memory address of the next data
buffer is provided directly from the channel's Next Address register. This feature is
described in “Buffer Chaining” on page 14-15.

The size of the address adder is increased to 28 bits wide to eliminate the limitation of
64-Kbyte physical page boundaries for 8-bit transfers and 128-Kbyte physical page
boundaries for 16-bit transfers. This feature is available for channels 3, 5, 6, and 7 only.

GP-DMA Transfer Modes

The GP-DMA controller performs read, write, and verify operations in each of the three
transfer modes: single, demand, or block. For all three modes, the GP-DMA initiator asserts
GPDRQx and must hold it active until the assertion of GPDACKX in order to be recognized.

Single Transfer Mode

In single transfer mode, the GP-DMA controller performs one transfer each time itis granted
the Am5,86 CPU bus. The GP-DMA initiator asserts GPDRQx and holds it active as long
as it has data to be transferred. The initiator must negate its DRQx relative to the I/O
commands to ensure correct operation.

Demand Transfer Mode

In demand transfer mode, the GP-DMA initiator asserts GPDRQx and holds it active as
long as it has data to be transferred. The GP-DMA controller continues to perform GP-DMA
transfers until Terminal Count (TC) is reached or the GPDRQXx is deasserted by the GP-
DMA initiator. The initiator must negate its DRQXx relative to the 1/O commands to ensure
correct operation.

When using demand transfer mode, if the transfer is configured for automatic initialization
control mode, GPDRQx must be deasserted prior to the assertion of GPTC in the last DMA
cycle to prevent another transfer. Otherwise, the channel is automatically masked and
requires initialization before it will respond to subsequent requests.

14-12

Elan™SC520 Microcontroller User’s Manual

GP Bus DMA Controller AMDZ\

14.5.4.3

14.5.4.4

Block Transfer Mode

In block transfer mode, the GP-DMA initiator asserts GPDRQ and holds it active until
acknowledged by the assertion of GPDACKXx. The GP-DMA controller performs GP-DMA
transfers until TC is reached, indicating the programmed number of transfers has been
completed.

Transfer Types

Three GP-DMA transfer types are supported: read, write, and verify.

m A read transfer, shown in Figure 14-3, consists of a memory read cycle from the address

inthe current address register (concatenation of the channel’s Memory Address register,
Page register, and Extended Page register), followed by an 1/O write cycle to the
associated device.

A write transfer, shown in Figure 14-4, consists of an I/O read cycle followed by a memory
write cycle to the address in the current address register. Depending on the GP-DMA
channel selected, the data can be 8 bits or 16 bits in width.

A verify transfer, shown in Figure 14-5, is either a read transfer or a write transfer, but
without the generation of the I1/O and memory control signals, such as GPIORD,
GPIOWR, GPMEMRD, and GPMEMWR. A verify transfer is normally used for checking
the GP-DMA core to determine whether the address generation and control logic are
operating correctly. Data are not transferred in a verify cycle. ElanSC520 microcontroller
does not drive the SDRAM address out on the MA address bus during a DMA verify cycle.

Figure 14-3 GP-DMA Read Transfer

GPDRQXx / \

GPDACKx — /

daddr[27:0] \ Y\ Address Valid X |

GPAEN / \

dmemr /

GPIOWR, GPMEMWR \ /

GPD15-GPDO | { Data Valid)(F

GPTC / \

Elan™SC520 Microcontroller User’s Manual 14-13

AMDZ\

GP Bus DMA Controller

Figure 14-4 GP-DMA Write Transfer

GPDRQXx / \

GPDACKx — /

daddr[27:0] | | Address Valid J |

GPAEN /

dmemw

GPIORD, GPMEMRD /

GPD15-GPDO | (" Data Valid 4 -

GPTC / \

Figure 14-5 GP-DMA Verify Transfer

GPDRQx \

GPDACKX /

daddr[27:0] [¥ Address Valid) |

GPAEN

dmemr

GPIOWR, GPMEMWR

dmemw

GPIORD, GPMEMRD

I |

-

_/
-

—

GPD15-GPDO | X X F

GPTC J \

14.5.4.5 Automatic Initialization Control

When automatic initialization control mode is enabled via the AINIT bitin the Slave or Master
Channel x Mode register, the original values of the current address and current count
registers are automatically restored to the values in the base address and base count
registers of the given channel following the terminal count.

This feature is useful when data quantities of the same size are transferred to or from a
fixed buffer in SDRAM. This feature must be disabled when using buffer chaining mode;
otherwise, unexpected results may occur.

14-14 Elan™SC520 Microcontroller User’s Manual

GP Bus DMA Controller AMDZ\

14.5.4.6

14.5.4.7

Priority

The GP-DMA controller offers two priority schemes for servicing multiple requests. After
the recognition of any one channel for service, the other channels are prevented from
generating DMA cycles until the current transfer has completed (i.e., the current channel’s
DACKXx has deasserted).

m The fixed priority scheme is based upon the value of channel numbers (Channel 0 is
the highest priority, Channel 7 is the lowest priority). The higher priority channel prevents
the lower priority channel from servicing the request.

m In the rotating priority scheme, the last channel serviced becomes the lowest priority,
with the other channels rotating accordingly. This scheme is also known as the round
robin scheme.

Buffer Chaining

In enhanced GP-DMA mode, channels 3, 5, 6, and 7 allow transfer to/from two or more
data buffers in SDRAM for a single transfer request (fragmented data buffers). This feature
is known as buffer chaining. The purpose of this feature is to facilitate GP-DMA transfers
to or from non-contiguous buffers in SDRAM.

An example usage of this feature is to transfer a packet of data from SDRAM to the external
device. The packet header and the packet data might be in two noncontiguous locations in
SDRAM. By using the buffer chaining feature, users can transfer both the packet header
and packet data in one DMA transfer. Similarly, the GP-DMA controller can be used to split
up a packet header from the packet data into two SDRAM buffers when receiving packets.

Buffer chaining mode is enabled by setting the appropriate CHx_BCHN_ENB bit in the
Buffer Chaining Control (GPDMABCCTL) register (MMCR offset D98h).

1. The Next Address registers and the Next Transfer Countregisters should be programmed
prior to the start of the GP-DMA cycle.

2. Whenthe transfer countis reached, the GP-DMA controller checks the CHx_CBUF_VAL
bits in the Buffer Chaining Valid (GPDMABCVAL) register (MMCR offset D9Bh).

3. If this bit is set, the contents of the Next Address and the Next Transfer Count registers
are loaded into the internal current address and current transfer count registers,
respectively.

4. The GP-DMA controller hardware then generates a maskable or non-maskable interrupt
and clears the CHx_CBUF_VAL bits.

5. This bit indicates to software that another buffer can be set up in the chain by writing to
the Next Address and Next Transfer Count registers with new values.

6. The DMA transfer then continues until the next terminal count.

7. Ifthe CHx_CBUF_VAL bits were not set, GP-DMA controller generates the interrupt and
also asserts GPTC to indicate the end of the chain.

Typically, buffer chaining should be used in single transfer mode, but block mode or demand
mode operation is also supported.

When using block transfer mode, the GP-DMA controller holds the bus request active until
the end of the last buffer in the chain. It is worth noting that only two buffers can be chained
at atime when using block transfer mode. Because the GP-DMA controller does not release
the GP bus during the transfer, the Next Address and Next Transfer Count cannot be
reprogrammed to link in another buffer while a GP-DMA transfer is in progress.

Elan™SC520 Microcontroller User’s Manual 14-15

AMDA GP Bus DMA Controller

The automatic initialization control mode cannot be used in conjunction with buffer chaining
mode.

14.5.5 Bus Cycles
Table 14-8 shows the four GP-DMA cycle types and the command strobes generated in
each cycle. The GP bus command strobes GPMEMRD and GPMEMWR are asserted for
memory-mapped I/O devices on this bus. The internal memory commands are not shown
in this table.

Table 14-8 GP-DMA Cycle Types

Data Transfer Direction GP Bus Command
GP-DMA Initiator | GP-DMA Target | (GP-DMA Cycle Type) Strobes Generated
I/O device SDRAM I/O to memory (GP-DMA write) GPIORD
I/O device SDRAM Memory to I/0 (GP-DMA read) GPIOWR
Memory-mapped | SDRAM Memory-Mapped I/O to memory GPMEMRD
I/O device (GP-DMA write)
Memory-mapped | SDRAM Memory to memory-mapped /O GPMEMWR
I/O device (GP-DMA read)

14.5.5.1 GP Bus 1/0 to SDRAM
Figure 14-6 shows a GP-DMA read cycle in demand transfer mode.

Figure 14-6 GP-DMA Read in Demand Transfer Mode

GPDRQx \
GPDACKx —
daddr[27:0] [YAddr Valid ¥ Addr Valid | Addr Valid) |
GPAEN / o
GPDBUFOE S

dmemr R N | A

GPIOWR, GPMEMWR \ \ \
GPD15-GPDO [Y Data valid {_¥Data Valid | (Data Valid { +
GPTC T\

14-16 Elan™SC520 Microcontroller User’s Manual

GP Bus DMA Controller AMDZ\

14.5.5.2 GP-DMA Read with Cache Hit
Figure 14-7 shows a read transfer with a cache hit (write-back cache).

Figure 14-7 GP-DMA Read Transfer with Cache Hit (Write-Back Cache)

GPDRQXx

GPDACKx

daddr[27:0]

GPAEN
GPDBUFOE

eads
hitm

hold
hida

dmemr
GPIOWR,

GPMEMWR
GPD15-GPDO

GPTC

] \
A
[¥ Address Valid I |
] [
— —
_/
/
]
\
/ I
| A
\ Y Data Valid X }-

14.5.6 GP Bus Echo Mode

When GP bus echo mode is enabled, GPAEN is driven high during accesses from the
Amb5,86 CPU to internal peripherals to prevent external devices from decoding (or
responding to) these internal peripheral accesses. In normal operation (GP bus echo mode
disabled), the GP bus controller never asserts GPAEN.

However, accesses initiated by the GP bus DMA controller are not affected by enabling the
GP bus echo mode, and therefore the GP bus DMA controller still asserts GPAEN as it
does during normal operation. During an internal GPDMA access in GP bus echo mode,
the external GP bus commands, GPIORD, GPMEMRD, GPIOWR, GPMEMWR, are not
asserted. However, GPAEN is still asserted. For additional information about this mode,
see “GP Bus Echo Mode” on page 13-10.

Elan™SC520 Microcontroller User’s Manual 14-17

AMDZ\

GP Bus DMA Controller

14.5.7

14.5.8

14.5.9

14.5.10
14.5.10.1

Clocking Considerations

The GP-DMA controller can be programmed to operate at 4 MHz, 8 MHz, or 16 MHz. This
option is specified in the GP-DMA Control (GPDMACTL) register (MMCR offset D80h).
Note that these frequencies are derived from the 33-MHz clock. The exact frequency is an
even fraction of the crystal (33.000-MHz or 33.333-MH2z) being used in the system.

Interrupts

In normal GP-DMA mode, the GP-DMA controller does not generate interrupts, but it does
assert GPTC upon the completion of every transfer.

When buffer chaining mode is enabled, the GP-DMA controller generates a maskable or
non-maskable interrupt every time a buffer is completely transferred. This interrupt is
generated after the valid values of the Next Address and Next Transfer Count are loaded
into the internal current address and current transfer count registers, respectively. GPTC
is asserted only when there is no other buffer in the chain. When GPTC is asserted, the
interrupt is still generated.

Software Considerations

Channel 4 must always be set to be in cascade mode; otherwise, erroneous operation may
result. Only Channel 4 should be programmed for cascade mode. All other channels should
be programmed to be in one of the other three modes (single, demand or block).

The Memory Address and Transfer Count registers of each channel are byte-accessed.
Two consecutive byte reads or writes to the same I/O address are required when accessing
the 16-bit values of these registers. In enhanced GP-DMA mode, although the Next Address
registers and the Next Transfer Count registers are both split up into two 16-bit registers,
the Low and High words have been placed so that they can be accessed using 32-bit
instructions. Although the GP bus splits 32-bit accesses up into two 16-bit accesses (i.e.,
the setting of the low and high address will be nonatomic), this should not typically cause
any problems.

When using the buffer chaining feature in block transfer mode, the GP-DMA controller
continues to hold the bus request until the second buffer is finished. The interrupt generated
after the first buffer finishesin this case is useless to software, because the interrupt handling
routine is not able to get access to the Am5,86 CPU bus (because the GP-DMA controller
is programmed for block transfer mode).

Note that the GPDRQXx signal must be deasserted before an active channel can be masked.

Latency
Nonpreemptive Latency

The ElanSC520 microcontroller implements a write buffer and a read buffer (with read-
ahead feature) to optimize SDRAM performance. These buffers can improve GP-DMA
latency during block transfer or demand transfer.

m During a write transfer, the write buffer collects bytes (or words) from the GP bus and
writes back to SDRAM in a full doubleword. This mechanism effectively provides one-
wait-state write accesses to SDRAM, as seen from the GP-DMA controller.

m During a read transfer, the read buffer reads the entire cache-line (16 bytes). This
effectively provides zero-wait-state read accesses from SDRAM by the GP-DMA
controller. However, since the read buffer fetches forward, GP-DMA channels that are
configured in address decrement mode experience more read buffer misses. The read
buffer does not prefetch for GP-DMA accesses because they are less than one
doubleword.

14-18

Elan™SC520 Microcontroller User’s Manual

GP Bus DMA Controller AMDZ\

14.5.10.2

14.6

14.6.1
14.6.1.1

The operations of these buffers are described in detail in Chapter 11, “Write Buffer and
Read Buffer”.

Preemptive Latency
The following events could delay a GP-DMA acknowledgment.

m SDRAM refresh cycle (the acknowledgment is given; however, the transfer is delayed)
m PCl requests
m A higher priority GP-DMA request

m A cache write-back, if the GP-DMA target is in a dirty cache-line (the acknowledgment
is given; however, the transfer is delayed)

m Slow transfers to ROM/GP bus

Once a demand transfer or block transfer has started, if the GP-DMA controller is trying to
read from a SDRAM region that is in the cache, the transfer is paused while a cache snoop
occurs. If the cache holds data in the cache line that the GP-DMA controller is accessing,
a cache-line write-back cycle may also occur.

INITIALIZATION

The GP-DMA controller is reset by a system reset. In addition, the slave and the master
controllers each have a software reset source, from the Slave DMA Controller Reset
(SLDMARST) register (Port 000Dh and the Master DMA Controller Reset (MSTDMARST)
register (Port 0ODAh), respectively.

The GP-DMA controller is enabled after system reset, but all channels are masked off. This
is also the state after the DMA Controller Reset registers are written to. All channels default
to normal GP-DMA mode. The operating frequency defaults to 4 MHz.

Example Configurations
Configuring an 8-Bit Channel in Normal GP-DMA Mode

In normal GP-DMA mode, there are four 8-bit channels: 0, 1, 2, and 3. Any internal request
from the serial ports or any external request can be mapped to one of these channels. The
following steps configure an 8-bit channel.

1. Enable the DMA slave core.

2. Program Channel 4 to use cascade mode via the TRNMOD field in the Master DMA
Channel 4-7 Mode (MSTDMAMODE) register (Port 00D6h) and unmask Channel 4.

3. Program operating frequency if not using the default 4 MHz.
4. Map the request to a specific channel.

5. Program the memory address, transfer count, page address, and extended page
address of the associated channel.

6. Program DMA mode, type, address increment mode, and priority mode.

7. Unmask the channel request in the Slave DMA General Mask (SLDMAGENMSK)
register (Port 000Fh). At this point, the GP-DMA controller is ready to accept the external
request.

Elan™SC520 Microcontroller User’s Manual 14-19

AMDA GP Bus DMA Controller

14.6.1.2 Configuring a 16-Bit Channel in Normal GP-DMA Mode

In normal GP-DMA mode, there are three 16-bit channels: 5, 6 and 7. Any external request
can be mapped to one of these channels. The internal requests from the UART serial ports
cannot be mapped to a 16-bit channel because they only support 8-bit data transfer. The
following steps configure a 16-bit channel for an external request.

1. Enable the DMA master core.

2. Program the operating frequency if not using the default 4 MHz.
3. Map the external request to a specific channel.
4

. Program the memory address, transfer count, page address, and extended page
address of the associated channel.

5. Program DMA mode, type, address increment mode, and priority mode.

6. Unmask the channel request in the Master DMA General Mask (MSTDMAGENMSK)
register (Port 0ODEh). At this point, the GP-DMA controller is ready to accept the external
request.

14.6.1.3 Configuring an 8-Bit Channel in Enhanced GP-DMA Mode

In enhanced GP-DMA mode, channels 5, 6, and 7 can be configured to be 8-bit channels.
Any internal request from the UART serial ports can be mapped to Channel 3 for the
enhanced GP-DMA mode features. The 8-bit external devices can be mapped to channels
3,5, 6, and 7. The following steps configure an 8-bit channel for an external request.

1. Enable the DMA slave core if using Channel 3, otherwise enable the master core.

2. If using Channel 3, program Channel 4 to use cascade mode via the TRNMOD field in
the Master DMA Channel 4-7 Mode (MSTDMAMODE) register (Port 00D6h) and
unmask Channel 4. Also, if using channels 5, 6, or 7, set the corresponding
CHx_ALT_SIZE bitin the GP-DMA Control (GPDMACTL) register (MMCR offset D80h).

Program the operating frequency if not using the default 4 MHz.
Enable enhanced GP-DMA mode.

Map the external request to a specific channel.

o g M w

Program the memory address, transfer count, page address, and extended page
address of the associated channel.

~

Program the extended transfer count for any transfer larger than 64 Kbytes (optional).
8. Program DMA mode, type, address increment mode, and priority mode.

9. Program the next address, next transfer count, and enable buffer chaining mode
(optional).

10.Unmask the channel request in the General Mask register. At this point, the GP-DMA
controller is ready to accept the external request.

14-20 Elan™SC520 Microcontroller User’s Manual

GP Bus DMA Controller AMDZ\

14.6.1.4

Configuring a 16-Bit Channel in Enhanced GP-DMA Mode

In enhanced GP-DMA mode, Channel 3 can be configured to be a 16-bit channel. The
16-bit external devices can be mapped to channel 3, 5, 6, and 7. The following steps
configure a 16-bit channel for an external request.

1.
2.

I

~

Enable the DMA slave core if using Channel 3, otherwise enable the master core.

If using Channel 3, program Channel 4 to use cascade mode via the TRNMOD field in
the Master DMA Channel 4-7 Mode (MSTDMAMODE) register (Port 00D6h) and
unmask Channel 4. Also, set the CH3_ALT_SIZE bit in the GP-DMA Control
(GPDMACTL) register (MMCR offset D80h).

Program the operating frequency if not using the default 4 MHz.
Enable enhanced GP-DMA mode.
Map the external request to a specific channel.

Program the memory address, transfer count, page address, and extended page
address of the associated channel.

Program the extended transfer count for any transfer larger than 128 Kbytes (optional).

Program DMA mode, type, address increment mode, and priority mode.

9. Program the next address, next transfer count, and enable buffer chaining mode

(optional).

10.Unmask the channel request in the General Mask register. At this point, the GP-DMA

controller is ready to accept the external request.

Elan™SC520 Microcontroller User’s Manual 14-21

AMDA GP Bus DMA Controller

14-22 Elan™SC520 Microcontroller User’s Manual

PROGRAMMABLE INTERRUPT

AMD X\

CONTROLLER

15.1

OVERVIEW

The ElanSC520 microcontroller's programmable interrupt controller (PIC) consists of three
industry-standard controllers, integrated with a highly programmable interrupt router.

The programmable interrupt controller is configured so that two controllers are cascaded
as slaves to a master controller that arbitrates interrupt requests from various sources to
the Am5,86 CPU. Interrupt channel 2 (IR2) and channel 5 (IR5) of the Master controller
are hard-wired to the outputs of the Slave 1 and Slave 2 controller respectively. In this
configuration, up to 22 maskable interrupt channels of different priorities are available to
the programmer.

The programmable interrupt router handles routing of the various external and internal
interrupt sources to the 22 interrupt channels of the three controllers. The interrupt router
can also be programmed to handle routing of various NMI sources to generate a non-
maskable interrupt to the CPU.

The ElanSC520 microcontroller’s programmable interrupt controller is designed to support
PC/AT-compatible features. Startup software can configure the programmable interrupt
router to route the sources to be used as ISA interrupts to the appropriate interrupt channels
of the Slave 1 and Master controllers.

PCI interrupts are level-sensitive, shareable, and typically implemented as open-drain
inputs. To support this, the programmable interrupt controller optionally allows the selection
of edge-triggered or level-sensitive interrupt detection on a per-channel basis, as an
alternative to the standard global selection of edge-triggered or level-sensitive detection on
all channels. This enhancement provides maximum flexibility in configuring a system
environment where mixed interrupt types are used.

Features of the ElanSC520 microcontroller’s programmable interrupt controller include:

m 22 interrupt priority levels plus NMI

m Programmable interrupt router capable of mapping interrupt sources (internal and
external) to different priorities or NMI

m 15 general-purpose external interrupt requests (GPIRQ10-GPIRQO and INTA-INTD),
programmable to be edge- or level-sensitive

m 19 internal interrupt requests programmable to be edge- or level-sensitive
m Ability to assert any of the interrupt priority levels, including NMI, via software
m Configurable to provide software compatibility with PC/AT interrupt controller

m Programmable interrupt polarity inversion for external sources

m Am5,86 CPU floating point error (ferr) interrupt clear, ignne function

Elan™SC520 Microcontroller User’s Manual 15-1

AMDZ\

Programmable Interrupt Controller

15.2

15.3

BLOCK DIAGRAM

Figure 15-1 is a block diagram of the ElanSC520 microcontroller’s programmable interrupt
controller showing interrupt sources and routing.

The programmable interrupt controller consists of a system of three individual interrupt
controllers (Master, Slave 1 and Slave 2), each of which has eight interrupt channels. Two
of the interrupt channels on the Master controller are used to cascade the slave controllers.
This allows a total of 22 interrupt priority levels in the ElanSC520 microcontroller. The priority
levels are numbered from P1-P22 to indicate which priority levels are assigned to slave or
master controllers, with P1 being the highest and P22 the lowest priority.

SYSTEM DESIGN

Table 15-1 shows PIC signals shared with other interfaces. When enabled, the multiplexed
signals shown in Table 15-1 either disable or alter any other function that uses the same pin.

The GPIRQ10-GPIRQO and INTA-INTD signals are asserted when a peripheral requires
interrupt service. The dedicated INTA-INTD pins are the same type of interrupt as the
GPPIRQx signals. They are named INTx to match the common PCI interrupt naming
convention.

Table 15-1

Programmable Interrupt Controller Signals Shared with Other Interfaces

PIO

(Default) Interface

Function Function Control Bit | Register

PIO23 GPIRQO PIO23_FNC | PIO31-PI10O16 Pin Function Select
PI022 GPIRQ1 P1022_FNC | (PIOPFS31_16) register

PIO21 GPIRQ2 pi021_Fnc | (MMCR offset C22h)

P1020 GPIRQ3 PI020_FNC

PIO19 GPIRQ4 PIO19_FNC

PIO18 GPIRQ5 P1018 FNC

PIO17 GPIRQ6 P1017_FNC

PIO16 GPIRQ7 PIO16_FNC

PIO15 GPIRQ8 PIO15_FNC | PIO15-PIOO0 Pin Function Select
PIO14 GPIRQ9 PI014_FNC | (PIOPFS15_0) register (MMCR offset C20h)
PIO13 GPIRQ10 PIO13_FNC

15-2

Elan™SC520 Microcontroller User’s Manual

Programmable Interrupt Controller

AMDA

Figure 15-1

Programmable Interrupt Controller (PIC) Block Diagram

Elan™SC520 Microcontroller

Programmable Interrupt

NTA . Controller
INTB > irg_pl
INTC > % irqg_p2
INTD » ©
GPIRQO > =
GPIRQ1 B
GPIRQ2 y O Slave 1
GPIRQ3 > ﬁ Controller
GPIRQ4 S .
GPIRQ5 R g {%} IRO (P3)
GPIRQ6 I g ps R1 (P4) -
GPIRQ7 . g rq_p6 |R2 (P5) N 2211
GPIRQ8 s irq p7_ IR3 (P6)
> o
GPIRQ9 | irq_ps R4 (P7) 2 Master
GPIRQ10 | irq_po_ RS (P8) Controller
- g pI0 IR6 (P9)
ICE ice_irq — IR7 (P10) — IR0 (P1)
L— IR1 (P2)
; — IR2 INT —
wpv_irq irq_p11
ADU Q. pI2 IR3 (P11)
IR4 (P12
gp_tmr0_irg —— IR5 ()

Timers | gp_tmrl_irq Interrupt Slave 2 — IR6 (P21)
gp_tmr2_irq Router Controller — IR7 (P22)
pit_tmr0_irg irq_pl3
pit_tmrl_irg ITq_p1a :22 8;12; intr
pit_tmr2_irg MIS s2_irq —»

—— irq_p16 'R2 (P15),\ ¢ CPU
irq_pi7 'R3 (P16)
uart1_irq Tirq_p1s IR4 (P17)
UARTS uart2_irq [irg_p19 IRS (P18) *
Tro_p20 'R6 (P19) —>
IR7 (P2
RTC pricir (P20) _ Numeric —
—
e ferr_irq Error » ferr
Logic
WDT [Wwdt_irg irq_p21
irq_p22
ss| ssi_irq
nmi_out | AMmi
ecc_irg —Pl
SDRAM ecc_nmi .
o nmi_enb

PCI Host | PCi_ird nmi_trig

Bridge pci_nmi irq[22:1]_trig Configuration 2

Arbiter <«——~ Regqisters 5

——pS
gpdma_bc_irq 2
GP-DMA|— >
t Control
- Logic
Control signals

Notes:

The priorities of the 22 channels are shown, with P1 being the highest and P22 the lowest priority.

Elan™SC520 Microcontroller User's Manual 15-3

AMDZ\

Programmable Interrupt Controller

15.4 REGISTERS
The programmable interrupt controller (PIC) is controlled by the registers listed in Table 15-2
and Table 15-3.
Table 15-2 Programmable Interrupt Controller Registers—Memory-Mapped
MMCR
Offset

Register Mnemonic Address Function

P1015-PIO0 Pin Function PIOPFS15 0 C20h P10 or interface function select: GPIRQ10-

Select GPIRQ8

P1031-PI1016 Pin Function | PIOPFS31_16 C22h PIO or interface function select: GPIRQ7—

Select GPIRQO

Interrupt Control PICICR DOOh Global interrupt mode enables, global NMI
enable, NMI completion control

Master PIC Interrupt Mode MPICMODE D02h Edge- or level-sensitive interrupt mode select
per channel

Slave 1 PIC Interrupt Mode | SL1PICMODE DO3h Edge- or level-sensitive interrupt mode select
per channel

Slave 2 PIC Interrupt Mode | SL2PICMODE DO04h Edge- or level-sensitive interrupt mode select
per channel

Software Interrupt 16—-1 SWINT16 1 D08h Software interrupt generation control (priority

Control levels 1-16)

Software Interrupt22—-17/NMI | SWINT22_17 DOAh Software interrupt generation control (priority

Control level 17-22), software NMI generation to the
CPU

Interrupt Pin Polarity INTPINPOL D10h Polarity of external interrupt sources (INTA—
INTD and GPIRQ10-GPIRQO)

PCI Host Bridge Interrupt PCIHOSTMAP D14h System arbiter and PCI Host Bridge interrupt

Mapping mapping to any of 22 available interrupt
channels or NMI, PCI NMI enable control

ECC Interrupt Mapping ECCMAP D18h ECC interrupt mapping to any of 22 available
interrupt channels or NMI, ECC NMI enable
control

GP Timer O Interrupt Mapping | GPTMROMAP D1Ah GP Timer 0 interrupt mapping to any of 22
available interrupt channels or NMI

GP Timer 1 Interrupt Mapping | GPTMR1IMAP D1Bh GP Timer 1 interrupt mapping to any of 22
available interrupt channels or NMI

GP Timer 2 Interrupt Mapping | GPTMR2MAP D1Ch GP Timer 2 interrupt mapping to any of 22
available interrupt channels or NMI

PIT O Interrupt Mapping PITOMAP D20h PIT 0 interrupt mapping to any of 22 available
interrupt channels or NMI

PIT 1 Interrupt Mapping PITIMAP D21h PIT 1 interrupt mapping to any of 22 available
interrupt channels or NMI

PIT 2 Interrupt Mapping PIT2MAP D22h PIT interrupt mapping to any of 22 available

interrupt channels or NMI

15-4

Elan™SC520 Microcontroller User’s Manual

Programmable Interrupt Controller

AMDA

Table 15-2 Programmable Interrupt Controller Registers—Memory-Mapped (Continued)
MMCR
Offset

Register Mnemonic Address Function

UART 1 Interrupt Mapping UART1MAP D28h UART 1 interrupt mapping to any of 22 available
interrupt channels or NMI

UART 2 Interrupt Mapping UART2MAP D29h UART 2 interrupt mapping to any of 22 available
interrupt channels or NMI

PCI Interrupt A Mapping PCIINTAMAP D30h PCI INTA mapping to any of 22 available
interrupt channels or NMI

PCI Interrupt B Mapping PCIINTBMAP D31h PCI INTB mapping to any of 22 available
interrupt channels or NMI

PCI Interrupt C Mapping PCIINTCMAP D32h PCI INTC mapping to any of 22 available
interrupt channels or NMI

PCI Interrupt D Mapping PCIINTDMAP D33h PCI INTD mapping to any of 22 available
interrupt channels or NMI

DMA Buffer Chaining DMABCINTMAP | D40h DMA buffer chain interrupt mapping to any of 22

Interrupt Mapping available interrupt channels or NMI

SSI Interrupt Mapping SSIMAP D41h SSl interrupt mapping to any of 22 available
interrupt channels or NMI

Watchdog Timer Interrupt WDTMAP D42h WDT interrupt mapping to any of 22 available

Mapping interrupt channels or NMI

RTC Interrupt Mapping RTCMAP D43h RTC interrupt mapping to any of 22 available
interrupt channels or NMI

Write-Protect Violation WPVMAP D44h Write-protect violation to PAR interrupt mapping

Interrupt Mapping to any of 22 available interrupt channels or NMI

AMDebug Technology RX/TX | ICEMAP D45h AMDebug technology JTAG port receive or

Interrupt Mapping transmit interrupt mapping to any of 22 available
interrupt channels or NMI

Floating Point Error Interrupt | FERRMAP D46h Floating point error interrupt mapping to any of

Mapping 22 available interrupt channels or NMI

GPIRQO Interrupt Mapping GPOIMAP D50h GPIRQO interrupt mapping to any of 22 available
interrupt channels or NMI

GPIRQ1 Interrupt Mapping GP1IMAP D51h GPIRQ1 interrupt mapping to any of 22 available
interrupt channels or NMI

GPIRQ2 Interrupt Mapping GP2IMAP D52h GPIRQ?2 interrupt mapping to any of 22 available
interrupt channels or NMI

GPIRQ3 Interrupt Mapping GP3IMAP D53h GPIRQ3 interrupt mapping to any of 22 available
interrupt channels or NMI

GPIRQ4 Interrupt Mapping GP4IMAP D54h GPIRQ4 interrupt mapping to any of 22 available
interrupt channels or NMI

GPIRQ5 Interrupt Mapping GP5IMAP D55h GPIRQ5 interrupt mapping to any of 22 available
interrupt channels or NMI

GPIRQ6 Interrupt Mapping GP6IMAP D56h GPIRQ6 interrupt mapping to any of 22 available

interrupt channels or NMI

Elan™SC520 Microcontroller User’s Manual

15-5

AMDZ\

Programmable Interrupt Controller

Table 15-2 Programmable Interrupt Controller Registers—Memory-Mapped (Continued)
MMCR
Offset
Register Mnemonic Address Function
GPIRQ7 Interrupt Mapping GP7IMAP D57h GPIRQ7 interrupt mapping to any of 22 available
interrupt channels or NMI
GPIRQS8 Interrupt Mapping GP8IMAP D58h GPIRQ8 interrupt mapping to any of 22 available
interrupt channels or NMI
GPIRQS9 Interrupt Mapping GP9IMAP D59%h GPIRQ9 interrupt mapping to any of 22 available
interrupt channels or NMI
GPIRQ10 Interrupt Mapping | GP10IMAP D5Ah GPIRQ10 interrupt mapping to any of 22

available interrupt channels or NMI

Table 15-3 Programmable Interrupt Controller Registers—Direct-Mapped

Register Mnemonic I/0 Address | Function

Master PIC Interrupt Request | MPICIR 0020h Real-time status of interrupt request assertion
Slave 2 PIC Interrupt Request | S2PICIR 0024h

Slave 1 PIC Interrupt Request | S1IPICIR 00AOh

Master PIC In-Service MPICISR 0020h Interrupt request service status

Slave 2 PIC In-Service S2PICISR 0024h

Slave 1 PIC In-Service S1PICISR 00AOh

Master PIC Initialization MPICICW1 0020h Interrupt mode, address interval, cascade or
Control Word 1 (ICW1) S2PICICW1 0024h single PIC configuration, ICW4 control

Slave 2 PIC Initialization S1PICICW1 00AOh

Control Word 1 (ICW1)

Slave 1 PIC Initialization

Control Word 1 (ICW1)

Master PIC Operation Control | MPICOCW?2 0020h Interrupt EOI, priority rotation control, EOI level
Word 2 (OCW2) S2PICOCW?2 0024h select, control to access OCW2 and OCW3
Slave 2 PIC Operation S1PICOCW2 00AOh

Control Word 2 (OCW2)

Slave 1 PIC Operation

Control Word 2 (OCW2)

Master PIC Operation Control | MPICOCWS3 0020h Poll command, read register command, special
Word 3 (OCW3) S2PICOCWS3 0024h mask mode

Slave 2 PIC Operation S1PICOCWS3 00AOh

Control Word 3 (OCW3)

Slave 1 PIC Operation

Control Word 3 (OCW3)

Master PIC Initialization MPICICW?2 0021h Base interrupt vector number

Control Word 2 (ICW2) S2PICICW?2 0025h

Slave 2 PIC Initialization S1PICICW?2 00A1h

Control Word 2 (ICW2)

Slave 1 PIC Initialization
Control Word 2 (ICW2)

15-6

Elan™SC520 Microcontroller User’s Manual

Programmable Interrupt Controller AMD:'

Table 15-3 Programmable Interrupt Controller Registers—Direct-Mapped (Continued)
Register Mnemonic I/0 Address | Function
Master PIC Initialization MPICICW3 0021h Slave cascading channel select (MPICICW3)
Control Word 3 (ICW3) S2PICICW3 0025h
Slave 2 PIC Initialization S1PICICW3 00A1h
Control Word 3 (ICW3)
Slave 1 PIC Initialization
Control Word 3 (ICW3)
Master PIC Initialization MPICICW4 0021h Nested mode, EOl mode
Control Word 4 (ICW4) S2PICICW4 0025h
Slave 2 PIC Initialization S1PICICWA4 00A1h
Control Word 4 (ICW4)
Slave 1 PIC Initialization
Control Word 4 (ICW4)
Master PIC Interrupt Mask MPICINTMSK 0021h Channel interrupt mask
(OCw1) S2PICINTMSK | 0025h
Slave 2 PIC Interrupt Mask | S1PICINTMSK 00A1h
(OCw1)
Slave 1 PIC Interrupt Mask
(OCw1)
Floating Point Error Interrupt | FPFUERRCLR FOh Clear FPU error interrupt
Clear
15.5 OPERATION
15.5.1 Interrupt Flow Sequence

The following describes the typical interrupt flow sequence in a system that uses the
ElanSC520 microcontroller’s PIC.

1. When a device generates an interrupt request that translates to either a rising edge or
level High at the mapped interrupt channel, the corresponding Interrupt Request (xIR)
register bit is set.

2. The PIC performs a check on its internal Interrupt Mask (XINTMSK) register and In-
Service (XISR) register. If this requesting interrupt is not masked off and if another
interrupt of the same or higher priority is not in progress, the Master controller requests
an interrupt from the CPU.

3. If the IF bit is set in the CPU’s Flags register (via the STl instruction), the CPU
acknowledges the interrupt. At this time, the PIC places the 8-bit interrupt vector of the
currently active highest-priority interrupt request on the data bus, and the corresponding
In-Service (XISR) register bit is set in the PIC. If the IF bit is disabled, the interrupt is
ignored.

Note that the interrupt request must remain active at least until the first CPU acknowledge
pulse occurs before it is considered as a valid interrupt request. If no interrupt request is
active when the acknowledgement occurs, then the affected master or slave PIC returns
the interrupt entry number associated with its IR7 input. However, in this circumstance no
In-Service (XISR) register bit is set. This is known as the spurious interrupt condition and
can be detected by the interrupt handler for priority level P22 (for the Master controller),
P10 (for the Slave 1 controller), and P20 (for the Slave 2 controller). The Interrupt Request
(xIR) register bitis always set for the duration of the interrupt request, regardless of whether
it is a spurious or a valid interrupt request.

Elan™SC520 Microcontroller User’s Manual 15-7

AMDZ\

Programmable Interrupt Controller

15.5.2

15.5.2.1

4. The CPU readsthe interruptvector and servicesthe interrupt corresponding to the vector
read during the acknowledgment.

5. Before further interrupts for the same priority level can be serviced, an EOI (end-of-
interrupt must be issued to the PIC to reset the In-Service (XISR) register bit of the
currently active interrupt. This can be done in one of two ways.

— In automatic EOI (AEOI) mode, the In-Service (XISR) register bit is reset at the end
of the acknowledgement cycle from the CPU. Note that AEOI mode does not support
polling, and it can only be used in a master configuration, not in a slave configuration.

— When AEOI is disabled, the interrupt handler must clear the In-Service (xISR) register
bit by issuing a EOI command at the end of the interrupt service routine.

For an interrupt request coming from either one of the slave controllers, the slave controller
generates an interrupt to the Master controller and asserts its corresponding Interrupt
Request (xIR) register bit at the Master controller. The Master controller first determines if
there is a higher priority interrupt that is currently being serviced. If there is not, it requests
an interrupt from the CPU, as described in step 2. Otherwise, the higher priority interrupt
service routine continues uninterrupted until another interrupt request is received from the
PIC.

There are two ways in which an interrupt request from a slave controller differs from the
interrupt sequence mentioned above. Steps 3-5 are similar in this case, but because the
Interrupt Request (xIR) register bit set by the slave output is the highest priority interrupt,
the Master controller now commands the slave controller to supply the interrupt vector to
the CPU.

The other difference is that two EOIls are required: one to the Master controller to reset its
highest priority In-Service (XISR) register bit (set by the interrupt request) and the other to
the slave to reset its highest priority In-Service (XISR) register bit. The order of these two
EOIs does not matter.

Interrupt Sources

The interrupt sources in the ElanSC520 microcontroller can be divided into four distinct
categories:

m Externally-generated hardware interrupts from interrupt input pins

m Internally-generated hardware interrupts from peripherals

m Internally-generated hardware interrupts from interrupt trigger bits

m Software interrupts (generated with the INT instructions)

This section discusses all of these except software interrupts. Note that the first two
hardware interrupt sources listed above can be mapped to the Am5,86 CPU’s NMI interrupt
input. NMl is discussed in “Non-Maskable Interrupts and Routing” on page 15-14. Software
interrupts work in the standard x86 fashion and are not discussed in this manual.

Hardware-Generated Interrupts
In the ElanSC520 microcontroller, there are 57 hardware interrupt sources:

m 23 can come from control bits in the Software Interrupt 16—1 Control (SWINT16_1)
register (MMCR offset DO8h) and the Software Interrupt 22—-17/NMI Control
(SWINT22_17) register (MMCR offset DOAh).

m 15 can come from the 15 external interrupt pins (GPIRQ10-GPIRQO and INTA-INTD)

15-8

Elan™SC520 Microcontroller User’s Manual

Programmable Interrupt Controller AMD:'

19 are generated from internal peripheral sources, including:
— PCI host bridge/system arbiter (interrupt)

— PCI host bridge (NMI)

— SDRAM ECC single-bit error (interrupt)

— SDRAM ECC multi-bit error (NMI)

— Six timers (three GP timers and three PIT timers)

— Two UARTS

— GP-DMA buffer chaining

- SSI

— Watchdog timer

— RTC

— Write-protection violation in Programmable Address Region (PAR) register
— AMDebug interface JTAG port receive or transmit activity

— Floating point error

As shown in Figure 15-2 on page 15-9, of thel9 internal peripheral sources:

17 can be used for maskable interrupts. The two sources that cannot be configured as
a maskable interrupt are the SDRAM ECC multi-bit error NMI source and the PCI host
bridge’s separate NMI-only source.

18 can be routed to the Am5,86 CPU’s NMI input. The only source that cannot be used
to generate an NMI is the SDRAM ECC single-bit error source.

The internal PCI host bridge and the SDRAM controller each generate a maskable interrupt
source and an NMI interrupt source. However, only the internal PCI host bridge interrupt
source can be mapped to generate either a maskable interrupt or an NMI. The SDRAM
controller's maskable interrupt source cannot be mapped to generate an NMI.

Figure 15-2

Interrupt Sources

External 15
Sources 0
1
polarity[0..14]
src_enb[0..14]
(nmi_enb[0..14] for NMI)
Int | 17 for maskable interrupt
nterna (18 for NMI) | 17 (18 for NMI)
Peripheral
Sources _ src_enb[15..31] —‘
(nmi_enbf[15..32] for NMI) To a specific controller’s
interrupt channel (x22)
) or NMI
Trigger 23
CERSOI irq[1..22]_trig
(nmi_trig)

Elan™SC520 Microcontroller User’s Manual 15-9

AMDZ\

Programmable Interrupt Controller

15.5.3

15.5.3.1

Interrupt Source Routing

Figure 15-3 on page 15-11 shows the implementation of the interrupt router. None of the
interrupt enable signals are shared across the interrupt channels.

Each of the 32 hardware interrupt sources that come from peripherals (15 external and 17
internal) is fed into each of the 22 OR gates for the 22 interrupt channels. Each of the 22
OR gates also has an additional input from the one of the Software Interrupt x Control
(SWINTX) registers.

When set, the interrupt trigger control bits cause their associated interrupt signals to be
asserted at the PIC. These bits are under complete control of software. During normal
operation, hardware does not set or clear these bits. A reset does clear these bits.

Allincoming interrupt requests are arbitrated by the interrupt controllers based on the priority
levels shown in Figure 15-1 on page 15-3, with the highest priority interrupt being serviced
first. There is a mask bit associated with each of the 22 interrupt channels, providing a
means for each interrupt channel to be masked individually.

Multiple interrupt requests can be shared on a common interrupt channel. This is discussed
further in “Interrupt Sharing” on page 15-13.

After reset, each of the interrupt sources must be mapped to the desired interrupt channel.
This is usually done by the initialization software. It can be done during normal operation
as well. The default power-on-reset state for these mapping bits is cleared; the programmer
has to specifically map the individual interrupt requests to the desired interrupt channels.

Polarity Inversion of Interrupt Requests

Since each of the three individual interrupt controllers can only recognize either a Low-to-
High edge-triggered or an active High level interrupt request, a programmable inversion is
available for each of the 15 external interrupt requests to support active Low interrupt
sources. For example, a PCl generated interrupt request that is active Low must be inverted
within the ElanSC520 microcontroller prior to reaching the PIC channelto which itis mapped
before the controller can recognize a valid interrupt request.

All internally-generated interrupt signals have the correct active High polarity and need no
inversion via software. These internally-generated signals include those for the GP-DMA
controller, PCI host bridge system arbiter, timers, UARTSs, SSI, watchdog timer, SDRAM
controller, RTC, AMDebug technology interface, floating-point error, and address mapping,
as well as internally-generated NMI signals.

15-10

Elan™SC520 Microcontroller User’s Manual

Programmable Interrupt Controller AMDl‘yl

Figure 15-3 Interrupt Source Routing

Channel 22 Router

.

Channel 2 Router
Channel 1 Router

GPIRQO —-@2 Ii' |

polarityQ '
src_enb0 ; '
GPIRQ10 : 0 f
g;l
polarity10
src_enbl10
INTA 1
Do =D—
polarityll '
src_enbll

src_enbl4

pit_tmr0_irq
src_enbl5 ——
pit_timrl_irq
src_enbl6
pit_tmr2_irg
src_enbl7
gp_tmrO_irq
src_enbl18 —
gp_tmrl_irq
src_enbl9 —
gp_tmr2_irq
src_enb20
uartl_irq
src_enb21 —
uart2_irq
src_enb22 —
€cc_irg
src_enb23
gpdma_bc _irq
src_enb24
wdt_irg
src_enb25
rtc_irq
src_enb26
pci_irg
src_enb27
ssl_irq
src_enb28
wpv_irq
src_enb29
ice_irg
src_enb30
Terr_irg
src_enb31 ——
irq[1]_trig

Notes:

All the 32 hardware interrupt sources are common to all the 22 channel routers. The polarity control signal per
external interrupt source is also common to all the 22 channel routers. The decoder for the enable signals is not
shown; only the decoded representation of the signals is shown. Each channel router has its unique internally-
generated hardware interrupt trigger, and only irq[1] trig is shown for channel router 1.

irq_p22

AJUUUUUUUTT\[U

AN

Elan™SC520 Microcontroller User’s Manual 15-11

AMDZ\

Programmable Interrupt Controller

15.5.3.2 PC/AT Compatibility
For PC/AT-compatible systems, the microcontroller hardware does not automatically map
legacy ISA interrupt signals to their respective Slave 1 and Master controllers. The user’s
software must ensure that these interrupts are routed correctly to the appropriate PC/AT-
compatible channels. Table 15-4 shows the interrupt channel assignment implemented in
a PC/AT-compatible system.
Table 15-4 PC/AT Interrupt Channel Mapping
PC/AT-Compatible System ElanSC520 Microcontroller
IRQ I/O Device Priority nterrupt Source to Map
IRQO System Timer O P1 Internal (PIT O interrupt)
IRQ1 Keyboard interface P2 External via GPIRQXx pin
IRQ21:2 | Slave controller cascading — Cascaded from Slave 1 controller
IRQ3 UART 2 P11 Internal (UART 2 interrupt)
IRQ4 UART 1 P12 Internal (UART 1 interrupt)
IRQ512 | Parallel port 2 P13 External via GPIRQX pin
IRQ6 Floppy disk controller P21 External via GPIRQXx pin
IRQ7 Parallel port 1 P22 External via GPIRQx pin
IRQ8 Real-time clock P3 Internal (RTC interrupt)
IRQ9 Any 8- or 16-bit ISA device P4 External via GPIRQX pin
IRQ10 Any 8- or 16-bit ISA device P5 External via GPIRQX pin
IRQ11 Any 8- or 16-bit ISA device P6 External via GPIRQXx pin
IRQ12 Mouse interface pP7 External via GPIRQXx pin
IRQ13 Numeric coprocessor P8 Internal (floating point error interrupt)
IRQ14 Any 8- or 16-bit ISA device P9 External via GPIRQX pin
IRQ15 Any 8- or 16-bit ISA device P10 External via GPIRQXx pin
Notes:
1. In the ElanSC520 microcontroller’s PIC, interrupt channels 2 and 5 of the Master interrupt con-
troller are hard-wired to the outputs of Slave 1 and Slave 2 interrupt controllers, respectively. The
cascading of the slave controllers is fixed in order to simplify the system interrupt programming
model.
2. When configured for PC/AT-compatible operation, the Slave 1 interrupt controller is cascaded and
the Slave 2 controller is bypassed. In this configuration, IRQZ2 is not available, and interrupt priority
P13 acts as IRQS5. For configuration details see “PC/AT Compatibility” on page 15-12.
15.5.3.3 Floating Point Errors

The ElanSC520 microcontroller supports DOS-compatible floating point error handling via
the standard Floating Point Error Interrupt Clear (FPUERRCLR) register (Port 00F0h), as
in legacy PC/AT systems. PC/AT systems control floating point error reporting externally
through the PC’s interrupt controller, rather than through the internal CPU interrupt. In this
case, an interrupt request is generated and typically routed to IRQ13 (although it is
programmable via the ElanSC520 microcontroller’s PIC). This allows an interrupt handler
to write to the Floating Point Error Interrupt Clear (FPUERRCLR) register to clear the
interrupt request and force the CPU’s ignore numeric error (ignne) signal active, thus
enabling execution of floating-point instructions within the interrupt handler. Once the FPU
error condition is cleared by the handler, the floating point error (ferr) signal is deasserted,

15-12

Elan™SC520 Microcontroller User’s Manual

Programmable Interrupt Controller AMD:'

15.5.3.4

15.5.4

15.5.5

and the internal ignne signal is subsequently deasserted. The interrupt request and ignne
signal are also cleared by a system reset.

Disabling the Slave Controllers

Each of the slave controllers can also be disabled via software, and interrupt requests can
be easily routed to the associated interrupt channels of the Master controller. For example,
if the Slave 1 controller is disabled, interrupt request irg_p3 that is hooked to the priority 3
input of the same controller is visible to the Master controller channel input IR2. Similarly,
if the Slave 2 controller is also disabled, interrupt request irg_p13 is visible to the Master
controller channel input IR5 (see Figure 15-1 on page 15-3). In other words, both of these
interrupt requests would bypass the slave controllers. In this manner, a very simple interrupt
configuration is realized via software, in which eight or fewer interrupt priorities can be
implemented using just the Master controller. As such, only one EOI needs to be generated
to minimize software overhead and improve latency of the interrupt cycle.

For more information about this topic, see “Software Considerations” on page 15-18.

Edge-Triggered or Level-Sensitive Interrupts

Each of the 22 interrupt priority levels can be configured as an edge-triggered or level-
sensitive interrupt. This departs from the standard implementation of the individual interrupt
controller, whereby a global bit for each controller determines the interrupt type for all the
incoming interrupt requests.

Inthe ElanSC520 microcontroller, each individual interrupt controller is enhanced to provide
this interrupt type recognition capability on a per channel basis. A bit is provided for each
of the 22 interrupt channels for interrupt type programmability. The selection between global
and per-channel interrupt mode is done via software. However, the original global bit is
retained for the individual controllers, such that all of the interrupts for each device can be
restored globally as either edge- or level-sensitive. This is useful for PC/AT compatibility,
especially for the Master and Slave 1 controllers.

Regardless of whether the controller is programmed for edge-sensitive or level-sensitive

mode, the interrupt request source must continue asserting the interrupt request until the
CPU acknowledges the interrupt. Because this acknowledgment is not viewable externally
to the ElanSC520 microcontroller, itis recommended that external interrupt sources provide
a mechanism through which the interrupt service routine can deassert the interrupt request
via software.

Interrupt Sharing

The controllers support sharing interrupt inputs from multiple interrupt sources. Interrupt
sharing is applicable to all internal and external interrupt sources. To put it simply, since
OR gates are used to map interrupt sources to interrupt channels, it is easy to map more
than one interrupt source to a single interrupt channel. This is shown in Figure 15-3.

Level-sensitive interrupt sharing is typically implemented by tying multiple interrupt outputs
using an open drain or open collector output to a single interrupt input pin. Of course, this
can be done externally to the ElanSC520 microcontroller in the conventional manner.

However, interrupt sharing can also be easily configured internally to the microcontroller,
merely by mapping multiple interrupt sources to the same interrupt channel. The channel’s
OR gatesinherently “share” the interrupt channel among multiple interrupts. In this scenario,
an interrupt-pending status bit must be implemented in each device. All internal peripherals
have interrupt status bits.

Elan™SC520 Microcontroller User’s Manual 15-13

AMDZ\

Programmable Interrupt Controller

15.5.6

15.5.6.1

Since programmable inversion of the interrupt signal is available, the external device can
generate an interrupt to the ElanSC520 microcontroller by either driving the interrupt
request line Low and allowing a pullup resistor to generate the rising edge or by actively
driving the line Low from its default High inactive state through a pullup resistor (as in PCI
interrupt generation).

Sharing edge-triggered interrupts in the ElanSC520 microcontroller is not recommended.
For more information about this topic, see “Software Considerations” on page 15-18.

Non-Maskable Interrupts and Routing

A unique feature of the ElanSC520 microcontroller’s PIC is its ability to route most of its
hardware interrupt sources via software to generate a non-maskable interrupt (NMI) to the
CPU.

m With the exception of the internally-generated ECC interrupt from the SDRAM controller,
all the other interrupt sources can be routed to the Am5,86 CPU’s NMI input.

m The PCI host bridge and SDRAM controller each generate a separate and distinct NMI
interrupt source to the PIC. The interrupt source can only generate an NMI and not a
maskable interrupt to the CPU.

There are 34 interrupt sources for NMI generation to the CPU:

m 15 external interrupts
m 18 internally-generated interrupts

m 1 software NMI source

Figure 15-4 on page 15-15 shows the logical implementation of NMI generation in the
ElanSC520 microcontroller.

Sharing NMls

NMIs can be shared in the ElanSC520 microcontroller. NMI sources are routed logically to
an OR gate, as shown in Figure 15-4 on page 15-15.

Each individual interrupt source is gated by an enable signal to selectively allow it to be
shared with the other interrupt sources. Each of these enable signals is controlled via the
Interrupt Mapping (XMAP) registers and is enabled by programming its interrupt routing bits
to11111b. An NMI Enable (NMI_ENB) bit in the Interrupt Control (PICICR) register (MMCR
offset DOOh) provides the mechanism to prevent all NMIs from reaching the CPU. This bit
has been moved from the PC/AT-compatible location (see “Legacy NMI Enable Bit Moved”
on page 20-10 for more details). NMIs are disabled on system and soft reset and must be
enabled via setting the NMI_ENB bit before use.

It is recommended that sharing NMls be done using level-sensitive NMls only. All NMIs
should be treated similarly to the maskable interrupt sources. All NMIs once asserted should
remain asserted until cleared by software. The NMI_DONE bit located in the Interrupt
Control (PICICR) register facilitates NMI sharing. This bit is visible to all NMI handlers, and
the currently executing NMI handler should clear the NMI source prior to asserting the
NMI_DONE bit. NMI handler software should write a 1 to the self-clearing NMI_DONE bit
immediately before executing the IRET instruction to exit from the handler. Setting the
NMI_DONE bit deasserts the NMI signal to the CPU for a brief time before allowing any
other pending NMI requests to be serviced, in order to satisfy NMI timing requirements of
the CPU.

Sharing edge-triggered NMls in the ElanSC520 microcontroller is not recommended.

15-14

Elan™SC520 Microcontroller User’s Manual

Programmable Interrupt Controller

AMDA

Figure 15-4 NMI Routing

Notes:

gpdma_bc_irq

GPIRQO

olarit
nﬁwi_engo

GPIRQ10

polarltg
nmi_en

INTA

polarityll
nmi_enb11

INTD

polarity14
nmi_enb14
pit_tmr0_irq
nmi_enbl5 ——
pit_tmrl_irq
nmi_enb16 —
pit_tmr2_irq
nmi_enbl7 ——
gp_tmr0_irq
nmi_enb18 —
gp_tmrl_irq
nmi_enbl9 —
gp_tmr2_irq
nmi_enb20 ——
uartl_irq
nmi_enb21 —|
uart2_irq
nmi_enb22 ——
ssi_irq
nmi_enb23 ——
ecc_nmi ——
nmi_enb24 ——
wdt_irq
nmi_enb25 —
rtc_irq
nmi_enb26 ——
pci_nmi ——
nmi_enb27
pci_irq
nmi_enb28 —

nmi_enb29 ——
WpVv_irg
nmi_enb30 —
ice_irq
nmi_enb31 —
Terr_irq

ddldls

o

[

o

[y

[y

o

o B

u

|
) |
Di

A

nmi_enb32

UUUUUUUUUUUUUTTT

nmi_trig

nmi_enb____|

nmi_out
_‘)—» NMI to CPU

The polarity control signal per external interrupt source is common to those used across the channel routers. The
gating NMI enable bits for each source are controlled via the interrupt mapping registers. The NMI conditioning logic

to implement NMI sharing is not shown in this figure

Elan™SC520 Microcontroller User’s Manual

15-15

AMDZ\

Programmable Interrupt Controller

15.5.7

15.5.8
15.5.8.1

Priority Types

Each individual interrupt controller prioritizes interrupt requests by their IR number, as
shown in Figure 15-1 on page 15-3. This places IR0 as the highest priority and IR7 the
lowest, which is the default ordering.

In a cascaded environment, the full 22 priority level is as shown in Figure 15-1, with P1
being the highest and P22 the lowest priority. As a result, if two or more interrupt requests
appear simultaneously, the higher priority interrupt is serviced first and the lower priority
interrupt is pending.

The interrupt controller supports nested interrupts. The depth level of nesting affects system
performance, and the programmer must implement this with care.

The interrupt controller also supports specific and automatic rotation types.

m In specific rotation, the lowest priority can be programmed in the individual controller,
thus fixing all the other priorities.

— For example, in Figure 15-1, if P5 is programmed to be the lowest priority, then P6 of
Slave 1 controller would be the highest priority within this controller.

— In this case, the priority order starting with the highest priority level would follow as:
P1-P2 (Master), P6-P10 (Slave 1), P3-P5 (Slave 1), P11-P12 (Master), P13-P20
(Slave 2), P21-P22 (Master). This is assuming that the Master and Slave 2 controllers
are each programmed with IR7 as the lowest priority.

— In fact, the implementation shown in Figure 15-1 is of a fixed priority scheme (with
priority ordering of P1-P22) and is a variation of the specific rotation type.

m |n automatic rotation scheme, all priority levels within the controller are treated as equal.

— In this mode, an interrupt request after being serviced receives the lowest priority, so
that the same device requesting an interrupt is queued.

— In the worst scenario, the device would have to wait until each of the seven other
devices is serviced at most one time.

Configuration Information

Programming

The initialization sequence of the PIC consists of writing a sequence of two to four bytes
to each controller. The firstinitialization byte is written to the lower address of the controller,
(020h for the Master, OAON for Slave 1, and 024h for Slave 2), and all subsequent initialization
bytes are written to the upper address of the controller (021h for the Master, 0A1h for Slave
1, and 025h for Slave 2).

1. The firstinitialization byte, the Initialization Control Word 1 (xICW1) register, notifies the
controller that an initialization sequence is starting. This register also controls the type
of interrupt-triggering (edge- or level-sensitive), whether the controller is in a cascaded
environment or alone, and whether the fourth initialization byte, the Initialization Control
Word 4 (xXICW4) register, is required or not.

2. The second byte, the Initialization Control Word 2 (xICW?2) register, contains the vector
offset for the controller. For PC/AT-compatible interrupts, XICW2 should be 08h for the
Master controller and 70h for the Slave 1 controller (Slave 2 is not used in PC/AT-
compatible systems).

3. The third byte, the Initialization Control Word 3 (XICW3) register is written only if XICW1
indicates that the controller is in a cascaded environment. For the Master controller, it

15-16

Elan™SC520 Microcontroller User’s Manual

Programmable Interrupt Controller AMD:'

identifies which IR inputs are hooked up to slave controllers. For the slave controllers,
it identifies the IR pin on the master to which that particular slave is connected.

It is important to note that the ElanSC520 microcontroller’s PIC can be configured as a
stand-alone master controller, one slave cascade (either Slave 1 or Slave 2), or cascading
with both slave controllers.

— To configure it as a stand-alone Master controller where 8 or fewer interrupt requests
are available to the user, bits 2 and 5 must be cleared to 0 in the Master PIC Initialization
Control Word 3 (MPICICW3) register (Port 0021h).

— To configure it as a Slave 1 only cascade, the S2 and S5 bits must be set and cleared
respectively in the Master PIC Initialization Control Word 3 (MPICICW3) register (Port
0021h).

— For Slave 2 cascade only configuration, the S2 and S5 bits must be cleared and set
respectively in the Master PIC Initialization Control Word 3 (MPICICW23) register (Port
0021h).

— To configure cascading using both the slave controllers, the S2 and S5 bits must be
set in the Master PIC Initialization Control Word 3 (MPICICW3) register (Port 0021h).

4. Finally, the Initialization Control Word 4 (xICW4) register (written only if indicated in the
Initialization Control Word 1 (xICW1) register) controls whether EOls are generated
manually or automatically. It also contains some bits that must always be set in the
ElanSC520 microcontroller.

Note that some parameters in the PIC configuration registers are fixed based on the way
the controllers are arranged in the ElanSC520 microcontroller.

For example, the Slave 1 PIC Initialization Control Word 3 (S1PICICW3) register (Port
00A1h) always contains 2d to indicate that Slave 1 is hooked up to IR2 on the Master
controller.

For those configuration parameters that are not fixed, software that initializes the controllers
must be very careful to accurately reflect the correct arrangements of the controllers, as
shown in Figure 15-1 on page 15-3.

For example, if neither Slave controller is being bypassed, the Master PIC Initialization
Control Word 3 (MPICICW?3) register (Port 0021h) should contain 24h (or 00100100b) to
indicate that slave controllers are hooked up to its IR2 and IR5 signals.

After the interrupt controllers are initialized, any subsequent reads or writes to ports 021h,
0A1h, or 025h access the Interrupt Mask (XINTMSK) register of the Master, Slave 1, or
Slave 2 controllers. The Operation Control Word 2 (xOCW2) and Operation Control Word
3 (xOCW?3) registers are accessed by writing to the appropriate ports, 020h, 0AOh, or 024h.
The controllers can be configured in various modes using these registers.

5. Initializing the Interrupt Mask (XINTMSK) register provides the masking of the interrupt
requests on a per channel basis.

6. Writing to the Operation Control Word 2 (xOCW2) register configures the various rotation
and EOI modes.

7. Finally, the Operation Control Word 3 (xOCW3) register configures the different mask
modes, controls reading of the In-Service (XISR) register or the Interrupt Request (xIR)
register, and whether the controller is to be used by software to perform polling.

The rest of the non-controller specific registers are programmed next. This includes
programming the routing of the various interrupt sources to the appropriate priority level or

Elan™SC520 Microcontroller User’s Manual 15-17

AMDZ\

Programmable Interrupt Controller

15.5.8.2

15.5.9
15.5.9.1

NMI (as indicated in Figure 15-1) polarity inversion of the interrupt sources if needed,
different interrupt mode per channel, global interrupt mode enables, or master NMI enable.
These registers are listed in Table 15-2 on page 15-4.

It is recommended that EOIs be issued for all the channels prior to using the Set Interrupt-
Enable Flag (STI) instruction. This is to clear all spurious In-Service (XISR) register bits
that are potentially set during the initialization phase before enabling the CPU to accept
interrupt requests.

PC/AT Configuration

To configure the ElanSC520 microcontroller’'s PIC to be PC/AT-compatible, the same
configuration sequence detailed in “Programming” on page 15-16 is observed with the
following exceptions:

1. The SNGL bit must be cleared to 0 in the Master PIC Initialization Control Word 1
(MPICICW1) register (Port 0020h).

2. The S2 and S5 bits must be set to 1 and cleared to 0, respectively, in the Master PIC
Initialization Control Word 3 (MPICICW?3) register (Port 0021h).

3. The M_GINT_MODE and S1_GINT_MODE bits must be set to 1 in the Interrupt Control
(PICICR) register (MMCR offset DOOh).

4. The base interrupt vector numbers 08h and 70h must be written for the Master and Slave
1 PIC, respectively, to the Master PIC Initialization Control Word 2 (MPICICW2) register
(Port 0021h) and the Slave 1 PIC Initialization Control Word 2 (S1PICICW2) register
(Port 00A1h). This correctly programs the T7—T3 bit field in those registers, which
corresponds to bits 7—-3 of the 8-bit base interrupt vector number. This also clears the
A10-AS8 bit field (bits 2—0), which should be 0 for PC-AT-compatible interrupts.

5. The SFNM and AEOI bits must be cleared to 0 in the Master PIC Initialization Control
Word 4 (MPICICW4) register (Port 0021h), and the SFNM bit must be cleared to 0 in
the Slave 1 PIC Initialization Control Word 4 (S1PICICWA4) register (Port 00A1h).

6. Any interrupt sources used in the system must be mapped to appropriate interrupt
priorities via the interrupt mapping registers. Table 15-4 on page 15-12 correlates the
PC/AT IRQs and I/O devices to the ElanSC520 microcontroller’s interrupt priorities.

In this case, only the Slave 1 controller is cascaded to the Master controller via input IR2.
The Slave 2 controller is logically removed from the Master controller, and the highest priority
channel originally hooked to the former is now automatically routed to input IR5 of the latter,
thereby preserving the architecture of the PC/AT interrupt controller.

Software Considerations
Interrupt Sharing

Interrupt sharing increases system complexity and involves more software overhead.
Thorough understanding of performance implications to a system implementing interrupt
sharing is needed. For multiple interrupt requests sharing a line, the system designer needs
to be fully aware of the latency involved and the implications in interrupt sharing.

For example, in the worst case scenario, it may take an unacceptably long amount of time
before the CPU is able to service the first interrupt request hooked at the very beginning
of the interrupt chain (created during the interrupt hooking process). This problem is
compounded further if one or more interrupt requests before it are still pending. This can
be alleviated somewhat by prioritizing or re-ordering the more critical interrupt table entries
later in the chain during the interrupt hooking process.

15-18

Elan™SC520 Microcontroller User’s Manual

Programmable Interrupt Controller AMD:'

15.5.9.2

15.5.9.3

15.5.9.4

Although level-sensitive interrupt sharing generally works well, implementing edge-
sensitive interrupt sharing is not recommended.

Disabling the Slave Controllers

The ElanSC520 microcontroller's PIC has the flexibility to allow removal of either or both
the slave controllers logically from the cascade chain via software (see S2 and S5 bits in
the Master PIC Initialization Control Word 3 (MPICICW3) register). Disabling one or more
of the slave controllers allows configuring a system with fewer than 9 or 16 interrupt
channels.

Although the slave controllers are hard-wired to the Master controller, bypassing the slave
controllers via software during configuration could typically resultin a more efficientinterrupt
system, whereby only the Master controller needs to be initialized and configured. With this
configuration, only one non-specific EOl needs to be generated, instead of two, at the end
of the interrupt service routine.

When either of the slave controllers is disabled, the highest priority interrupt hooked to the
slave controllers is routed automatically to channels 2 and 5 of the Master controller,
respectively. As such, the programmer needs to be aware that mapping interrupts to the
other seven lower priority channels of the slave controller inhibits propagation of these
interrupt requests to the Master controller. Figure 15-1 on page 15-3 shows this
implementation in the ElanSC520 microcontroller’s PIC.

Detecting Invalid Interrupt Requests

If an interrupt request does not remain active long enough for the corresponding In-Service
(XISR) register bit to be set (a non-deterministic amount of time), the request is considered
a spurious interrupt pulse.

Spurious pulses on any of the interrupt requests cause the interrupt handler associated
with the IR7 input of the affected controller to be executed (priority level P22 for the Master
controller, P10 for the Slave 1 controller, or P20 for the Slave 2 controller). The Interrupt
Request (XIR) register bit is always set for the duration of the interrupt request, regardless
of whether it is a spurious or a valid interrupt request.

The interrupt handler associated with IR7 is required to check the In-Service (xISR) register
bit to determine if a valid interrupt request generated the interrupt. If the In-Service (XISR)
register bit is set, then a valid interrupt request is generated, and the normal routine is
executed. Otherwise, a spurious interrupt is identified and the interrupt routine exits.

In other words, spurious pulses on the interrupt requests that are shorter than a non-
deterministic duration can be filtered out by software that checks the In-Service (xISR)
register bit. Longer spurious pulses can only be detected if all interrupt sources hooked
onto a given priority level provide their own status bits.

Floating Point Unit Error Handling

To implement DOS-compatible floating-point error handling, such as is used in legacy
PC/AT systems, the Numeric Error (NE) bit in the CPU’s Control 0 (CRO) register must be
cleared. If the NE bit is set, an exception 16 will be generated instead of an external interrupt
request via the ElanSC520 microcontroller’s programmable interrupt controller. See the
Am486® DX/DX2 Microprocessor Hardware Reference Manual, 1994 (order #17965), for
further details on the floating point unit.

Elan™SC520 Microcontroller User’s Manual 15-19

AMDZ\

Programmable Interrupt Controller

15.6

INITIALIZATION
The programmable interrupt controller responds only to system reset.

The Slave 1, Slave 2, and Master interrupt controllers are not affected by system reset. The
interrupt controller direct-mapped registers, once configured, retain their values during a
systemreset. However, all other configuration registers default to their power-on reset states
when a system reset occurs. The interrupt router is reset, such that the interrupt requests
are gated off. This effectively disables all interrupt requests from reaching the CPU.

At system reset, the PIC is disabled.

1. Configure the Master, Slave 1, and Slave 2 controllers as described in “Configuration
Information” on page 15-16. Mask all interrupts.

2. Place an interrupt service routine at the locations corresponding to the interrupt priority
levels to be supported.

3. Enable the desired priority levels by mapping the interrupts sources to the interrupt levels
in the interrupt router and unmasking the interrupt in the corresponding interrupt
controllers. Set the IF bit in the CPU'’s Flags register using the STl instruction. (NMls
are disabled on system and soft reset and must be enabled via NMI_ENB bit before use).

15-20

Elan™SC520 Microcontroller User’s Manual

AMD X\

16 PROGRAMMABLE INTERVAL TIMER

16.1 OVERVIEW
The ElanSC520 microcontroller includes four separate timer modules: a PC/AT-compatible
programmable interval timer (PIT) with three timers, three general-purpose (GP) timers, a
software timer, and a watchdog timer. The programmable interval timer is described in this
chapter. The general-purpose timers are described in Chapter 17. The software timer is
described in Chapter 18. The watchdog timer is described in Chapter 19.
The programmable interval timer (PIT) on the ElanSC520 microcontroller includes three
separate timers, designed to provide PC/AT compatibility.
Features of the PIT include:
m Three 16-bit timers, or channels
m Clock source from either 1.1892-MHz source or an external pin. The same clock is routed
to all three channels.
m One interrupt output for each channel
m One external output pin for PIT Channel 2
m Several modes of operation, including:
— Interrupt on terminal count
— Hardware-retriggerable one-shot
— Rate and square wave generation
— Hardware- and software-retriggerable strobe
16.2 BLOCK DIAGRAM
Figure 16-1 shows a block diagram of the programmable interval timer.
16.3 SYSTEM DESIGN
Table 16-1 shows the PIT signals shared with other interfaces. The pinstrap function
associated with the PITOUTZ2 pin is sampled only as a result of PWRGOOD assertion and
does not affect the PIT function of this pin, so it is hot shown in this table. When enabled,
the multiplexed signals shown in Table 16-1 either disable or alter any other function that
uses the same pin.
Note: The CFG3 pinstrap associated with PITOUTZ2 is used for an AMD internal test mode.
Do not pull this pin High during reset.
Table 16-1 Programmable Interval Timer Signals Shared with Other Interfaces

Default Signal | Alternate Function | Control Register

CLKTIMER CLKTEST CLK_PIN_DIR | Clock Select (CLKSEL) register
(MMCR offset C26h)

PITGATE2 GPCS3 GPCS3_SEL | Chip Select Pin Function Select
(CSPFS) register (MMCR offset C24h)

Elan™SC520 Microcontroller User’s Manual 16-1

AMDﬂ Programmable Interval Timer

Figure 16-1 Programmable Interval Timer Block Diagram

Elan™SC520 Microcontroller
Programmable Interval Timer
Always Enabled
1.1892
MHz - pit_tmr0_irg
CLKTIMER >/ 4 Channel 0 >
> . .
gate 0 pit_tmrl_irq Jpic
. pit_tmr2_irg
PITGATE2 - Channel 1 >
—’ _»
gate 1
0061h[0]
Channel 2 | |
te 2
Port gate
B 0061h[1] >) » PITOUT2
0061h[5]

Notes:
Port B is addressed at 0061h in I/O space.

16.4 REGISTERS

The programmable interval timer (PIT) is configured using the registers listed in Table 16-2
and Table 16-3. The direct-mapped System Control Port B register is used to provide PC/
AT-compatible PIT functionality.

Table 16-2 Programmable Interval Timer Configuration Registers—Memory-Mapped

MMCR
Offset
Register Mnemonic Address Function
Chip Select Pin Function CSPFS C24h GPCS3 or PITGATE2 function select
Select
Clock Select CLKSEL C26h CLKTIMER[CLKTEST] pin enable, clock output
select options (PIT), CLKTIMER select (input
clock for PIT)
PIT O Interrupt Mapping PITOMAP D20h PIT 0O interrupt mapping
PIT 1 Interrupt Mapping PITIMAP D21h PIT 1 interrupt mapping
PIT 2 Interrupt Mapping PIT2MAP D22h PIT 2 interrupt mapping

16-2 Elan™SC520 Microcontroller User’s Manual

Programmable Interval Timer AMD:'

Table 16-3 Programmable Interval Timer Configuration Registers—Direct-Mapped
Register Mnemonic I/0 Address | Function
PIT Channel 0 Count PITOCNT 0040h Current count value for Channel 0
PIT Channel 1 Count PITICNT 0041h Current count value for Channel 1
PIT Channel 2 Count PIT2CNT 0042h Current count value for Channel 2
PIT O Status PITOSTA 0040h Counter mode status, null count, output state,
latch command or read/write control setting, and
BCD setting for Channel 0
PIT 1 Status PIT1STA 0041h Counter mode status, null count, output state,
latch command or read/write control setting, and
BCD setting for Channel 1
PIT 2 Status PIT2STA 0042h Counter mode status, null count, output state,
latch command or read/write control setting, and
BCD setting for Channel 2
PIT Mode Control PITMODECTL 0043h PIT counter select or read-back command, read/
write control or counter latch command, counter
mode, BCD select
PIT Counter Latch Command | PITCNTLAT 0043h Control to latch current count of the selected
channel for read-back
PIT Read-Back Command PITRDBACK 0043h Control to latch status and current count of each
channel for read-back
System Control Port B SYSCTLB 0061h PITOUT2 signal enable, status, and Channel 2
gate input control
16.5 OPERATION
The programmable interval timer provides three different timers, or channels, and six modes
of operation. Not all channels support every mode